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Abstract

In order for autonomous mobile robots to survive in the real w orld they have to be aware
of the environment. The self-assembling micro robots devel oped in the European project
Replicator are destined for such a task. By using several modalities, these robots must be
able to detect and recognize interesting objects in the environment. This thesis presents a
biologically inspired cognitive sensor fusion architectu re to create environmental awareness
in these micro robots. This architecture consists of a bi-modal attention module and multi-
modal sensor fusion. A state of the art visual saliency detection system has been optimized
and combined with biologically based sensor fusion methods to obtain a visual-acoustic at-
tention module. For multi-modal sensor fusion a new type of A RTMAP (self-organizing as-
sociative memory) called the Multi-directional ARTMAP (MdART MAP) has been designed.
With this MAARTMAP a module for unsupervised on-going learnin g of sound was devel-
oped by clustering states of an echo state network, which pro cesses cochlear Itered audio.
Also unsupervised visual object recognition was obtained w ith this MAARTMAP by cluster-
ing and associating salient SIFT keypoint descriptors. Based on these modules a multi-modal
sensor fusion system was created by hierarchically associdging the MdAARTMAPs of the dif-
ferent modalities. Experiments conducted in a 3D simulator showed that a simulated robot
was able to successfully perform a variety of search tasks with the cognitive sensor fusion
architecture.
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Chapter 1

Introduction

Cognitive sensor fusion is one of the mechanisms used in the European FP7 project: Repli-
cator [17] to obtain environmental awareness in micro-robo ts. The Replicator project focuses
on the development of mobile multi-robot organisms, which ¢ onsist of a super-large-scale
swarm of small autonomous micro-robots capable of self-assembling into large arti cial or-
ganisms. Due to the heterogeneity of the elementary robots and their ability to commu-
nicate and share resources, they can achieve great synerget capabilities. The goal of the
Replicator project is to develop novel principles underlyi ng these robotic organisms, such as
self-learning, self-con guration and self-adjustment. By using a bio-inspired evolutionary
approach the robots will evolve their own cognitive control  structures so that they can work
autonomously in uncertain environments without any human s upervision. Eventually these
robots will be used to build autonomous sensor networks, cap able of self-spreading and self-
maintaining in for example hazardous environments. For exa mple in the event of an earth-
quake, the micro-robots could dissemble to enter a collapsed building and then reassemble
once inside to crawl over obstacles and search autonomously for victims.

To obtain environmental awareness in the micro robots, cogn itive sensor fusion will be used.
Cognitive sensor fusion is a bio-inspired process, the equivalent biological systemis respon-
sible for our internal representation of the environment. T he self-organization which takes
place in biological sensor fusion is the research point of in terest. This master project focuses
on the development of cognitive sensor fusion through self- organization. With this project
an answer to the following research question is to be found:

How can biologically inspired sensor fusion be used in an eiath@e|f-organizing micro-system to
increase environmental awareness?

Implementing bio-inspired cognitive sensor fusion on an em bodied system can give insights
in how to bene t from self-organization in a system which inte racts with a dynamical envi-
ronment. This project will also give new insights in how to de velop a multi-modal saliency
detection system on a mobile robot.

The cognitive sensor fusion system will be tested in a 3D simu lator where visual-acoustic
information is fused for object detection and recognition. In the experiment the robot must
be able to distinguish other robots from other objects based on low quality sound and camera
images. By using cognitive sensor fusion with different mod alities the robot must be able to
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detect objects earlier and recognize objects better than wihout sensor fusion. If the robot is
searching for a particular object, then if it hears a sound, i t has to know what object, in the
sense of a visual representation, is associated with it and the other way around. So if the
robot is shown a picture of an object which he has to search for, then the robot should be able
to nd that object only based on the expected sound that it make s.

The remainder of this thesis is structured as follows; In the next chapter, the theoretical
background for the parts of the cognitive sensor fusion arch itecture is given. In chapter
3, a description of the methodology and implementation of th ese parts is given. It starts
with the attention module followed by self-organizing asso ciative memory and eventually

an implementation used for object recognition is described . In chapter 4, the implemented

modules used for the experiments and the experiment setup ar e described. The results of
the experiments are presented in chapter 5. In chapter 6, a summary and explanation of the

results are given followed by the conclusion and recommenda tions made for future work.
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Theoretical Background

2.1 Biological Sensory Integration

Cognitive sensor fusion is a biologically inspired approac h to integrate multiple sensor data.
To nd an architecture suited for mobile robots, taking a look at how biology has imple-
mented such a mechanism is needed. Studies in the literature of multi modal integration
(MMI) have been using different species to nd out more about the underlying architectures
in the brain. In mammals, integration has been found in the su perior colliculus. Although
much remains speculative, some general processes can be fanulated. A better understood
integration process is that of the insect brain. Neurobiolo gical research on the insect's ner-
vous system has identi ed essential elements like the mushro om bodies for multi modal
integration. A description of these two biological "archit ectures” will be given below.

2.1.1 Multi Modal Sensory Integration in Vertebrates

When looking for multi modal integration in vertebrates, th e superior colliculus (SC) is
found to be the main brain area involved in this integration. Neurons in the SC are respon-
sive to audio-, visual-, somatosensory-, and multi sensory stimuli. In the barn owl, visual
and auditory pathways are believed to be integrated in the de eper layer of the SC [25]. The
deeper layer is also involved in orientation-initiated beh aviour such as eye saccades. Most of
the neurons in the SC are bimodal (Audio-Visual). Visual sti muli from the retina is projected
(2D image map) to the super cial SC, in a way that a certain reti na location corresponds to
a neuron in the SC (retinotopic). The auditory stimuli to the SC comes from the external
nucleus of the inferior colliculus (ICx). The auditory inpu t shows frequency speci ¢ neural
response in the central nucleus (ICc), and neural response 1 speci ¢ positions in space in the
ICx. The neurons in both these areas are sensitive to interaural time differences (ITD). Fre-
quency neurons (ICc) with the same ITD are mapped to a single | Cx neuron. The auditory
map formed in the ICx shows a map shift due to change (error) in the visual map, in contrary
to ICc. An inhibitory network in the SC modulates the visual s ignal to allow adaptation only
when auditory and visual maps are misaligned (Map Adaptation Cue: MAC) ( gure 2.1).
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Figure 2.1: The schematic audio visual signal processing pathway. The circles represent neu-
rons, the lled arrows excitatory connections and the open ar row represents the inhibitory
connection between the SC's bimodal neuron and the interneuron. The salient auditory in-
put is denoted by (A) and the spatial visual salient input by (V). If the inputs from A and V
correspond, indicating aligned A and V stimuli, the connect ions to the bimodal neuron are
strengthened and the interneuron is inhibited strongly. In contrast, when the A and V sig-
nals do not match, the connection strength is decreased and the inhibition of the interneuron
reduced. (Taken from [25])

In a proposed model by [25], the MAC (which is adjusted by Spike Time Dependent Plas-
ticity) resides in an "interneuron” which is responsible fo r sending the visual signal to the
ICx. The sensory pathway can be divided into two sections (gu re 2.1). Block | with ICc
connected to ICx, and block Il with the detector of any shift b etween visual and auditory
cues and the controller of the ICc/ICx mapping (interneuron ). The neuron response in the
visual or audio layer have a center surround pro le. The ringr ate of the neurons with the
difference in spike timing encodes the location of objects i n the environment.

2.1.2 Multi Modal Sensory Integration in Insects

Wessnitzer and Webb [56] [55] have done several studies on the nervous system/brain of in-
sects. In [55] they have given a review about what is known abo ut two speci ¢ higher areas
in the insect (Dorsophila) brain, the mushroom bodies and th e central complex. The mush-
room bodies in most insects have similar and characteristic neuroarchitectures: a tightly-
packed parallel organization of thousands of neurons, call ed Kenyon cells. The mushroom
bodies are divided in: the calyces, the pendunculus and the | obes. In most insect species
the mushroom bodies receive signi cant olfactory input, and some also have connections
from the optic lobes to the mushroom bodies. The neurons in th e output regions of the
mushroom bodies can be classi ed as: sensory, movement-related or sensorimotor. A large
majority responds to multiple sensor stimuli and therefore seems to be involved with sen-
sory integration. The mushroom bodies are not the only senso rimotor pathways, there exists
a parallel pathway from sensors to the pre-motor unit (gure 2 .2).

4
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Figure 2.2: Multi-modal processing pathways of the Dorsophi la nervous system. The mush-
room bodies play an important role in the processing and inte gration of multi-modal in-
formation. Evidence suggests that mushroom bodies do not fo rm the only sensorimotor
pathway for any modality, sensory areas in the brain have dir ect connections to premotor
areas.(Taken from [55])

A role of the mushroom bodies is pattern recognition. The Keny on cells perform specic
processing functions on the primary sensory input to mushro om bodies. The dendrites from
the Kenyon cells to the lobes impose different Iter character istics. The Kenyon cells also
act as delay lines which could provide a mechanism for recogn izing temporal patterns in
the input. The spatio-temporal properties of the Kenyon cell s can act as a saliency detector
using the correlations in the input spike trains. Kenyon cell s receive direct sensory input
from a modal lobe and indirect via the lateral horn arriving s hortly after. The integration
time for the Kenyon cells is limited to short time windows, mak ing them sensitive to precise
temporal correlations.

A second role is the integration of sensory and motor signals . EXtrinsic neuron responses
have been reported which were selective to directions of tur ning behaviour. A distinction in
neural activity has also been reported for self-stimulatio n and externally imposed stimuli. It
is thought that an indirect pathway involving the mushroom b  odies converges with more
direct pathways for hierarchical integration and modulati on of behaviour.

Mushroom bodies also play an important role in associative le arning and memory. Kenyon
cells show structural plasticity by growing new connection s during the insect's life time.
The Kenyon cells seem to be a major site for the expression of 'learning' genes. Hebbian
processes underlying associative learning could reside in the Kenyon cell dendrites.

A sensor fusion method based on the structure of the mushroom bodies should be able to
perform: multi-modal saliency detection, pattern recogni tion using associative memory, and
integration of sensory and motor signals.
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2.2 Sensor Fusion

With respect to the sensor domain, sensor fusion can be divid ed in: fusion of information
from different sensor modalities that have a similar repres entation (single domain), and fu-
sion of complementary data from different sensor modalitie s that have a different represen-
tation (multi-domain). The rst one can be used for extractin g useful information out of a
single sensory information domain, whereas the second creates a coupling between different
sensory information domains. For example when combining vi sion with auditory localiza-
tion cues (spatial domain), the position of a certain object can be determined more accurately.
Fusing information from different domains can be done for ex ample by fusing an audio pat-
tern and an image of an object so that there is a visual and an auditory representation of the
object. Hearing an object will then create a mental image due to association.

Single and multi domain sensor fusion are needed to enlarge e nvironmental awareness and
the complexity of an autonomous system. Single domain sensor fusion can be seen as an
attentional mechanism, while multi domain sensor fusion ca n be seen as an associative pro-
cess. The in the previous section described biological sen®ry integration systems are exam-
ples of single and multi domain sensor fusion. Some examples of architectures that can be
used to create these types of sensor fusion systems will be described.

2.2.1 Self-Organizing Maps (SOM)

When thinking about associative memory, self-organizatio n comes to mind. The link be-
tween multi-modal integration (MMI) and self-organization ( SO) seems to be made because
of the associative processes in MMI. In the pre MMI stage associative network structures can
be found in for instance the retinotopical and tonotopical o rganization [31]. In "Multi-modal
Feed-forward Self-organizing mapisy Paplinski and Gustafsson [42] a method is proposed to
build a multi-modal classi cation system with hierarchical ly constructed SOMs. The con-
struction is based on the modular hierarchical structure of the mammalian neocortex [31].
The rst layer of the proposed structure is formed by three fee d-forward SOMs, each for a
modality, and these maps are connected to a single multi-mod al SOM. This structure incor-
porates both types of fusion: in the feed forward SOMs uni-mod al multi-sensory informa-
tion is merged, and in the last map multi-modal information.

In [43] this structure was used to build a Multi-modal Self-Or ganizing Network (MuSON),
consisting of several Kohonen maps. With the use of a feedback connection from the multi-
modal SOM, perception of corrupted stimuli in the uni-modal S OM was enhanced (Top-
Down). This feedback loop can be compared with the recalibra tion after integration mis-
alignment of bi-modal information in the superior collicul us [25]. In [43] it was successfully
implemented to enhance the perception of corrupted phoneme s using a bimodal map which
integrates phonemes and letters. The advantage of the MuSON in comparison with a sin-
gle SOM is the parallel uni-modal processing converging int o a multi-modal map. More
complex stimuli can therefore be processed without a growin g map size [43]. Bimodal inte-
gration and classi cation of phonemes and letters is not a com plex task in comparison with
unsupervised recognition and fusion of noisy auditory and v isual data. This makes it rather
uncertain whether this method is suitable for on-going lear ning in a dynamic and complex
environment.
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2.2.2 Reservoir Computing

Constructing a random recurrent topology with a trained sin gle readout layer for pattern
recognition is called reservoir computing. The idea behind it is that through pre-processing
the input is transformed to the feature space which has a high er dimension and is possibly
linearly separable. Echo state networks (ESNs) [29] and liquid state machines (LSMs) [39]
are the best performing types of reservoirs. In "An overview of reservoir computing: theory,
applications and implementationdly Schrauwen [46] a summary of the capabilities of these
methods is given. ESNs and LSMs differ on the type of node they u se, but which type of
node is best suited for what task is not known. Evidence in [52 ] shows that spiking neurons
might outperform analogue neurons for certain tasks, like s peech recognition. There also
seems to be a monotonic increase of the memory capacity as a function of the reservoir size
[52].

In "Dynamic liquid association: complex learning without impkible guidance’by Morse and
Aktius [41] a system is constructed where a liquid state mach ine is combined with an asso-
ciative network for pattern recognition. The relations tot he mushroom bodies are: saliency
detection using a spatio-temporal mechanism (the micro col umns as reservoir), and associ-
ating different sensor modalities (sensor-motor) using an associative network.

Morse and Aktius did several experiments with a mobile robot w ith infra-red and collision
detection sensors. It managed to learn obstacle avoidance ad showed complex behaviour.
They also conducted a classical conditioning experiment wh ere they used a camera with 10 x
10 x 3 pixel values but abandoned the LSM for reasons of computational speed on a SEER-1
robot. Instead they used an ESN microcircuit, which is compa rable with an LSM but has
a randomly generated continuous time or discrete time recur rent neural network with ana-
logue neurons instead of spiking neurons. This raises questions about the usability of LSMs
for computationally poor robots that use even more sensors w ith additional microcircuits.

In "Training networks of biological realistic spiking neurofw real-time robot control’by Burg-
ersteiner [4], a real-time off-line LSM with one microcircu it of 54 leaking integrate-and- re

neurons was used to create two reactive Braitenberg controllers (linear and non-linear) on a
Khepera robot. Using 6 IR sensors it was able to learn the desired behaviour. For training
they stored sensor input and motor output during a test run of the robot with a prepro-

grammed Braitenberg architecture. They used this off-line on an LSM, with the desired
motor response as target input for supervised linear regres sion learning. Although the used
setup is not desirable and is quit complex, they were able to s how that using one micro col-
umn was enough to imitate the linear and non-linear Braitenb erg behaviour on a miniature
robot.

2.3 Attention

Working with computationally poor systems requires the nee d of ef cient processing of in-

formation. When it comes to sensor information processing, visual and acoustic data pro-
cessing are the most demanding. Without selective attention sensory systems would be
either overwhelmed or blind to important sensory informati on. Therefore implementing
attention mechanisms derived from biology can be helpful.
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2.3.1 Visual Attention

The visual system is not capable of fully processing all of th e visual information that ar-
rives at the eye. In order to get around this limitation, a mec hanism that selects regions of
interest for additional processing is used. This selection is done bottom-up, using saliency
information, and top-down, using cueing.

The processing of visual information starts at the retina. T he neurons in the retina have a
center surround organization of their receptive elds. The s hapes of these receptive elds
are among others modelled by the difference of Gaussian (DoG) [45]. This function captures
the "Mexican hat” shape of the retina ganglion cell's recepti ve eld. These cells emphasize

boundaries and edges ( gure 2.3).

Figure 2.3: The difference of Gaussian, used to model retina cells. Left the Difference of a
Gaussian is shown as a graph, and right as an intensity image.

Further up the visual processing pathway is the visual corte x area V1. Here are cells that are
orientation-selective. These cells can be modelled by a 2D Gabor function ( gure 2.4).

N\

Figure 2.4: A steerable Gabor is used to model orientation selective V1 cells. Left an example
of a steerable Gabor is shown as a graph. On the right four diff erent steerable Gabor outputs
are shown as an intensity image.

Itti and Koch's implementation of Koch and Ullman's saliency m ap is one of the best per-
forming biologically plausible attention model [33] [28] [ 26]. Itti et al. [28] implemented
bottom up saliency detection ( gure 2.5) by modelling specic feature selective retina cells
and cells further up the visual processing pathway. The reti na cells use a center surround
receptive eld which is modelled in [28] by taking the DoG. The y also model orientation
selective cells using 2D Gabor lters. For each receptive eld their is an inhibitory variant.
For example if an on-center off-surround receptive eld show s excitation on certain input,
then the input will cause the opposite off-center on-surrou nd receptive eld to inhibit.

The sub-modalities that Itti et al. [28] use for creating a saliency map are intensity, color and
orientation. For each of these sub-modalities a Gaussian sale pyramid is computed to ob-
tain scale invariant features. For each of these image scals feature maps are created with a
receptive eld and its inhibitory counter part. For the inten  sity sub-modality on-center off-
surround and off-center on-surround feature maps for diffe rent scales are computed based

8
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on the pixel intensity. For the color sub-modality feature m aps are computed with center sur-
round receptive elds using a color pixel value as center with  its opponent color as surround.
The color combinations used for this are red-green and blue- yellow. The feature maps for
the orientation sub-modality were created using the 2D Gabo r lters for the orientations O,
45, 90, 135.

Inputimage _—

|
[ Linear filtering |

g_l:\h—

colors . intensity _ orientations

[ Center-surround differences and normalization |

Sl a— Feature o — maps e
%Th 2maps) (6 maps) 'T—'_Ir (24 maps) ‘?_I'
| Across-scale combinations and normalization |
- l Conspicuity - I —— maps = |_ .

[ Linear combinations |

) I
Saliency map _ . -

i - Inhibition
[ mnarltake-all ] of retumn

I
Atiended location

Figure 2.5: Saliency model Itti et al. [28]. This gure shows t he processing pipeline of the
saliency detection model. From top to bottom: an input image is Itered on color, intensity,
and orientation using receptive elds on different scales of the inputimage. Using a weight-
ing process (Center-surround differences and normalizati on) feature maps are created for
different scales for each sub-modality (color, intensity, orientation). Through across-scale
combinations and normalization conspicuity maps are creat ed for the three sub-modalities.
These three maps are subsequently combined into a saliency map. When modelling atten-
tional focus with this model, the inhibition of return willc  ause the second most salient loca-
tion to be attended. (Taken from [28])

To obtain a saliency map (gure 2.6) from all these features, a weighting process is exe-
cuted in several stages to obtain the most salient features. In the rst stage feature maps

are weighted across the different receptive elds, in the sec ond stage this is done across
the scales, and in the nal stage across the sub-modalities. By combining the feature maps

obtained in the last stage (conspicuity maps) a saliency map is created.

Itti and Koch's model has been implemented in a real-time syst em called the Beobot (Neu-
romorphic Vision Toolkit; NVT). A real-time system whichis  based on their work is VOCUS
[18]. VOCUS is used in several applications such as object recognition and visual localiza-

tion [21] [20] [22]. Itti, Koch, and Ullman' s attention model is also used for applications that

9
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Figure 2.6: A saliency map computed with the visual attentio n system of Itti et al. [28] with
the corresponding input image on the left. (Taken from [28])

are not used in real-time, such as text detection [34]. Chevallier et al. have implemented the
model using a spiking neural network (SNN) [16].

Both the NVT and the SNN model need a lot of computational powe r. The Beobotis equipped
with 4 Plll processors, and the SNN implementation has a good performance with 1 frame/sec
(76x56 pixels) on a 2.8 Gig Core2Duo processor. The computaional expensive part of the

model is the feature calculation for the different scales (see section 3.1.1). In Frintrop's im-
plementation [18] of Koch and Ullman's model [33], center-su rround features are calculated

using integral images (see section 3.1.1). With this optimization a comparable saliency de-
tection performance can be obtained with 100 frames/sec (200x150 pixels) on a 2.8 Gig pro-
cessor.

Spike-timing which seems to be an efcient and biologically p lausible way to compute
salient information [50], is computationally rather expen sive for current computers. There-
fore biologically inspired real-time visual attention sys tems seem to need algorithms from
computer vision to create a system which is usable in real-ti me.

2.3.2 Auditory Attention

Just like visual information processing, audio processing is also in uenced by attention.
Mechanisms exist to bias attention towards salient events so that information rich data has
a processing preference. In [32] Kayser et al. showed that visual saliency detection methods
are suitable for allocating auditory saliency. To nd salien t information in temporal data, a
transformation to a visual representation can be used to bene t from the more sophisticated
visual saliency detection methods. In [32] they visualized an audio stream as an intensity
image in a time-frequency representation. From this intens ity image an auditory saliency
map was computed using a visual saliency detection system based on work of Itti et al. [26].
The extraction of auditory salient features was based on thr ee types of features: the sound in-
tensity difference, the spectral contrast, and the temporal contrast. With these features they
were able to predict which sound samples would be perceived a s salient by humans and
monkeys. Based on this Kayser et al. [32] concluded that saliency is determined either by
implementing similar mechanisms in different uni-sensory pathways or by the same mech-
anism in multi-sensory areas. In any case, their results demonstrate that different primate
sensory systems rely on common principles for extracting re levant sensory events.

10
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Methodology & Implementation

The developed cognitive sensor fusion architecture ( gure 3 .1) is broadly based on the earlier
described audio-visual integration process found in the br ain of vertebrates, and the multi-
modal integration process in the well studied nervous syste m of the fruit y (Drosophila
Melanogaster). In this architecture environmental awarene ss is obtained through bi-modal
attention, via audio-visual saliency detection and binaur al localization; and through audio-
visual object recognition via multi-modal associative mem ory (sensor-fusion).

In the cognitive sensor fusion architecture in gure 3.1twot ypes of sensor fusion are shown
on the left and right. These are respectively multi-modal se nsor-fusion using Associative
Memory, and early stage sensor fusion used for Bi-Modal Attention. This architecture focuses
on integrating visual and auditory information, but associ ating other sensory information is
also possible.

The rst step in early stage sensor fusion is saliency detecti on. Visual saliency detectiois per-
formed on the camera image (see section 3.1) and on the visualrepresentation (cochleogram)
of an audio stream (see section 3.2). Based on the saliency iformation from the camera im-
age a spatial location is computed. The saliency informatio n from the cochleogram is used
to select the audio regions to compute the binaural cues from. The binaural cues and the
visual salient location are used for Bi-modal Attention(see section 3.3). Based on the saliency
information in both modalities, audio-visual object recog nition is initiated. After audio pre-
processing (see section 3.6) and image feature extraction $ee section 3.7) both sensory data
are fused using Associative Memorysee section 3.5).

In the next sections these modules will be described in more d etail, starting with early stage
sensor fusion: visual and bi-modal attention, followed by m ulti-modal sensor fusion: unsu-
pervised visual and auditory object recognition and associ ation.
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Figure 3.1: The cognitive sensor fusion architecture. In this abstract representation of the
architecture, modules are visualized by blocks and informa tion streams by arrows. Bi-Modal
Attention pathway: The Visual Saliency Detectiomodule receives a camera image and com-
putes a saliency map. The Visual Locationmodule returns the location of the most salient ob-
ject. The Cochlear Filterlters the audio stream from the microphone. The Auditory Saliency
Detectionmodule computes a saliency map from a cochleogram, after whi ch the Binaural
Cue Computatiormodule computes the binaural cues from the salient audio. Th e Bi-Modal
Attention module integrates the binaural cues and the visual location . Associative Memory
pathway: The Feature Extractionrmodule computes image features from the salient image
region. The Reservoirmodule transforms the cochlear Itered audio to feature spac e after
which the audio and visual features are associated in the Associative Memorynodule.
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3.1 Visual Saliency Detection

The visual saliency detection architecture that will be des cribed in this section is derived
from work of Itti et al. [28] and Frintrop et al. [19]. The prop osed architecture is implemented
in the 3D simulator Symbricator and will therefore be referr ed to as: Symbricator3D Image
Saliency-based Computational Architecture (SISCA). Itti et al. [28] implemented bottom up
saliency detection (gure 3.2) by modelling speci c feature s elective retina cells and cells
further up the visual processing pathway. The retina cells u se a center surround receptive
eld which is modelled in [28] by taking the difference of Gaus sian (DoG). They also model
orientation selective cells using 2D Gabor Iters. The featu res that they use for creating a
saliency map are intensity, color and orientation. For each of these features a Gaussian scale
pyramid is computed to obtain scale invariant features usin g receptive elds.

Figure 3.2: Saliency model Itti et al. (Taken from [28])

Frintrop et al. [19] created a modi ed version of Itti and Koch' s model called VOCUS. The
rst version of VOCUS was aimed at creating a better performin g system. Simpli cations in
Itti and Koch's model in comparison to the biological analogu e were changed in VOCUS to
obtain a biologically more plausible model and a better perf ormance. The drawback of these
changes was the high computational complexity of the system which made it not suitable
for real-time usage. To obtain a real-time saliency detection system they changed one of
the most computational expensive parts, the calculation of the center surround difference.
Instead of using a Gaussian scale pyramid they used integral images and computed the
center surround difference by taking the difference of mean (DoM) ( gure 3.3).
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Figure 3.3: The visual attention system VOCUS. VOCUS is basal on the saliency map com-
putation of Itti et al. [28]) (gure 3.2). It has the same proce ssing stages: linear ltering of
the input image followed by the creation of image pyramids, s cale maps, feature maps, con-
spicuity maps and the saliency map. The main difference in VO CUS is that the computation
of the Image Pyramidgor intensity and color is done with integral images. (Taken from [19])

Although the improved version of VOCUS has gained much proce ssing speed there is still
room for improvements. In order to preserve their original s tructure with scale pyramids

they chose to use separate integral images for each scale inead of just one integral image.
They also chose to keep the Gabor Iter instead of an approxima tion for better performance.

SISCA (gure 3.4) is mostly based on VOCUS. It also uses integral images for faster center
surround computations, but to increase computation speedt he 2D Gabor lters are replaced
by Haar-like features in combination with rotated integral images to compute the orientation
feature maps. Other changes on different levels have been made for a better speed accuracy
ratio. These will be discussed in the following sections.
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Figure 3.4: The implemented Symbricator3D Image Saliency-based Computational Archi-

tecture (SISCA). SISCA is mainly based the visual attention system VOCUS. The main dif-
ferences between these systems are that in SISCA no image pyamids are computed to ob-
tain the scale maps but instead integral images are used to campute the color and intensity

features and a rotated integral image is used for to compute t he orientation features. The dif-
ferent scales are obtained using different receptive elds s izes in the Center-surround ltering
using Haar-features

3.1.1 Scale Invariant Feature Extraction

The main difference between the visual attention system of | tti et al. [28], VOCUS [19] and
the new proposed architecture SISCA is the computation of th e scale invariant features. As
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described in section 2.3.1, features can be extracted usinglters which are based on the re-
ceptive elds of retina cells and cells from the visual cortex area V1. Because the traditional
calculation of these features with respectively a DoG lter a nd Gabor lters is computation-
ally expensive, an approximation of these lters can be used. Haar-like features in combi-
nation with integral images [54] can be used to obtain such an approximation. In VOCUS
only the DoG lter is approximated ( gure 3.5). To decrease the computation time even
further in SISCA, extended Haar-Like features with rotated integral images [36] are used to
approximate the Gabor lters. In the next sections the differ ent methods are elaborated on.

Figure 3.5: The center surround receptive eld approximatio n of a retina cell. Left the DoG,
and right the Haar-like equivalent.

Gaussian Scale Pyramids

In [28] Gaussian scale pyramids are used for scale invariant receptive eld feature extraction
(gure 3.6). Itis a commonly used method in image processing, but it is computationally
rather expensive. In VOCUS Gaussian pyramids are only used to compute scale invariant
features. Different image scales are normally used so that the Iter mask with which an
image is convolved does not have to change. The convolution of an image with a larger
mask is rather time consuming, O(nm) where n is the number of p ixels in the image and m
the number of entries in the Iter mask.

Figure 3.6: Gaussian scale pyramid. The layers of the image pyramid are obtained by sub-
sampling or downsampling the previous layer (typically by t aking every 2nd pixel), starting
with the original image on level 0. (Taken from [18])

When a Gaussian pyramid is used, several processing steps hase to be taken. First the input
image needs to be scaled down, which can be done by sub-sampling. Sub-sampling can
lead to aliasing and to overcome this problem the spatial fre quencies of the image which are
above the sampling frequency must be removed. This can be done by smoothing the image
with a Gaussian lter before sub-sampling it. When the recept ive eld lter is applied the
ltered image needs to be scaled up/back. In [28] they used 9 sp atial scales and all ltered
maps are resized to scale 4. In VOCUS they used 4 scales, 2 regdive eld sizes, and all
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maps are resized to scale 2. When scaling up some sort of inteipolation needs to be used for
anti-aliasing. In the rst version of VOCUS nearest neighbor interpolation was used, and in
the later version bilinear interpolation, a more accurate b ut also more expensive method.

Integral Images

Computing scale invariant receptive eld features with inte gral images is faster because the
computation of the average value of a region only needs a few | ookups and additions ( gure
3.7), itis independent of the lIter size, and creating an inte gral image requires only one scan
over the input image.

Figure 3.7: Integral image. Left: the value of pixel I(x,y) i s the summation of the pixels in the
grey area. Right: the computation of the shaded area based onfour operations. (Taken from
[19])

By using Haar-like features in combination with integral im ages, a fast and good approxi-
mation of the DoG and rst order Gaussian lIters can be obtained (gure 3.8).

Figure 3.8: Receptive elds. Left: from left to right: 0 and 90 degrees rst order Gaussian
steerable lters (Gabor) and a 2D DoG. Right: the analog Haar- like Iters.

3.1.2 Rotated Integral Images

When using integral images only simple rectangle Haar-like features can be created. In or-
der to approximate second order Gaussian lters (see section 2.3.1) with Haar-like features,
Rotated Integral Images (RIl) (gure 3.9) can be used. The RIl can be created using two
scans over the input image. With a RIl, 45 and 135 degree secoml order Gaussian lters

can be computed ( gure 3.10). These are called extended Haardike features. With all these
Haar-like features the three feature maps can be created.

17



Chapter 3

Figure 3.9: Rotated Integral image. Left: the value of pixel I(x,y) is the summation of the
pixels in the Grey area. Right: the computation of the shaded area based on four operations.
(Taken from [36])

Figure 3.10: Receptive elds. Left: a 45 and 135 degree Gabor Iter. Right the equivalent
extended Haar-like features.

3.1.3 Receptive Fields (On-center Off-center)

The retina consists of cells which have an on-center off-surround or off-center on-surround
receptive eld. In[28] these two types of receptive elds are ¢ ombined by taking the absolute
value of the difference between center and surround. A probl em with this approach, which
is also addressed in [19], is that this will lead to a wrong pop -out when the difference with
the background is the same for on-center and off-center. Therefore the computation of the
on-center off-center receptive eld in SISCA is done separat ely, and the map with the most
information is promoted which leads to the right pop-out (gu  re 3.11).

Figure 3.11: Saliency pop-out using separate on-center offcenter computations with SISCA.
(a) the input image (b) on-center off-surround intensity di fference (c) off-center on-surround
intensity difference (d) intensity feature map

3.1.4 Receptive Fields (Scales)

In order to obtain scale invariant features the Gaussian pyr amid is replaced by different
receptive eld sizes. When using the Gaussian pyramid each scale reduction reduces the
image dimensions from (n n)to (5 3), thisis more or less equivalent with increasing the
receptive eld size by 2. Applying a larger receptive eld size  does not change computation
time. It is faster than scaling down an image to nd scale invar iant features, because no
anti-aliasing has to be applied. Another positive aspect of using the original size is that the
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output image has far more details (gure 3.12). This gives the possibility to use a lower
resolution for the original image.

Figure 3.12: Saliency maps, white is more salient (normalized for printing). Top left: input
image. Top right: Itti et al. [28] saliency map. Bottom left: SISCA saliency map using 4 scales,
bilinear interpolation to scale 0 and 3 receptive eld sizes: 2, 4 and 8 (without distribution
as weight). Bottom right: SISCA saliency map using original scale and 9 receptive eld sizes
(without distribution measure as weight).

3.1.5 Feature Maps

For each sub-modality and receptive eld a feature map will be created. SISCA uses three
sub-modalities: intensity, color and orientation, and bet ween 8-12 receptive eld sizes. The
intensity feature map set consists of feature maps with on-c enter off-surround and off-center
on-surround receptive elds. The color map setis created usi ng a system known in the cortex
as "color double-opponent”. In the center of the receptive e Ids, neurons are excited by one
color and inhibited by another. This relation exists for: re d/green, green/red, blue/yellow,
yellow/blue. As in [28], these colors are broadly-tuned: re d=r-(g+b)/2,green=g- (r +
b)/2,blue=b-(r+g)/2,andyellow=(r+g)/2- jr-gj/2-b. The orientation map set
consists of 4 different orientation maps: 0, 45, 90, and 135 degrees, which are created using
the corresponding Haar-like edge lters.
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Figure 3.13: Feature maps created with SISCA (intermediate normalization). First row: the
input image and the on-center and off-center intensity maps . Second row: the color maps,
red/green, green/red, blue/yellow, yellow/blue. The thir  d and fourth row the on-center
and off-center maps for orientations: 0, 90, 45, and 135 degees.

3.1.6 Fusing Receptive Field Speci c Feature Maps

A feature map set with different receptive eld sizes needsto be fused into one feature map
(gure 3.13). Because there are a lot of feature maps, and somemaps have less information
than others, merging the maps can cause information to get masked (curse of dimensional-
ity). Therefore the maps rst need to be weighted to promote in formation rich maps and
suppress maps that contain nothing unique (gure 3.11). Afte r weighting the maps they are
merged using point-to-point pixel addition.

Promoting information rich maps is an important aspect of th e saliency detection system.
Determining which map has the most information is not a trivi al job. In [28], Itti et al. pro-
pose a map normalization operator. This operator works as fo llows:

normalize the values in the map to a xed range [0..M], in ordert o eliminate modality-
dependent amplitude differences;

nd the location of the map's global maximum M and compute the a verage mu, of all
its other local maxima;

globally multiply the map by (M mu)?
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One of the problems with this method was already pointed outi n [27]. Taking the difference
of the global and local maxima only works when there is just on e strong peak. With two
strong peaks the difference becomes zero which will result i n suppressing the map. To over-
come this problem they used a more complex iterative process, by local competition between
neighbouring salient locations.

In the VOCUS system they used a more simple approach:

Determine the global maximum M.
Count the number of local maxima N above a prede ned threshold from M.

Divide each pixel by the square root of N.

The threshold was determined empirically and was set to 50% o f the global maximum.

Areason given in [19] not to normalize the mapsto a xed range b ut only weigh them, is that
normalizing maps to a xed range removes important informati on about the magnitude of
the maps. They only apply normalization to create the conspi cuity maps, but not to a xed
range. Their motivation is that normalization is needed to m ake them comparable. Why this
does not remove important information about the magnitude o f the map is not mentioned.

3.1.7 Suppression, Promotion and Normalization

One of the main differences that can be seen when comparing both map weighting ap-
proaches is the promotion and suppression of maps. In [28] and [27] maps with more in-
formation are promoted more than maps with less information , while the information rich
maps in VOCUS are suppressed less than maps with less information. This in combina-
tion with or without normalization gives remarkably differ  ent results when implemented
in SISCA (gure 3.14 and 3.15). When considering maps with a lo t of noise and not much
information, suppression will wipe these maps out at an earl y stage by reducing the pixel
values to 0 (due to the use of integer values) before creating a feature or conspicuity map.
While promotion will let maps with only noise and not much inf  ormation exist. Fusing these
maps in the end by taking the sum or average will still give ris e to the noise. This approach
also leads to saliency maps where there is always a salient region even when there is nothing
salient in the scene. Applying suppression will yield a tota Ily black saliency map when there
is nothing salient in the scene.

Figure 3.14: SISCA: Effect of noise on map weighting and normalization. From left to right:
the input image, the intensity map, the color map, the orient ation map and the saliency map.
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Figure 3.15: SISCA: Effect of only applying normalization t o the feature maps when creating
conspicuity maps. From left to right: the input image, the in tensity map, the color map,
the orientation map and the saliency map. The effect of only n ormalizing the maps when
creating conspicuity maps like in [19] instead of normalizi ng all the maps like in [28], shows
that noise has far less in uence on the saliency map (gure 3.1 4). The color map which
mostly consists of noise is totally suppressed in this gure.

3.1.8 Map Weighting

The weight methods used in [28] and [19] are both very sensiti ve to noise. If a few white
pixels are encountered the weight value is set very high whic h results in promoting (or less
suppression) the map due to a small amount of peaks while all o ther pixel values could
be fairly low. In order to weight a map based on its maximum pix el value noise has to be
removed. Because SISCA uses the original image size the imag@ has to be smoothed rst
before it can be normalized and weighted, otherwise noise can mask the signal ( gure 3.16).

Figure 3.16: Effect of smoothing in SISCA (hormalization fo r creating conspicuity maps
only). Top row un-smoothed input image and saliency map. Bot tom row: smoothed in-
put image and saliency map.

Another drawback of the earlier mentioned weight functions is the bias for salient areas
of small volume. A salient blob can contain a lot of pixels, an d because only one peak is
favoured this blob is considered less salient than a few pixe Is scattered around an image.
This effect is especially noticeable in SISCA because it use higher resolution feature maps
than used in [28] and [19]. To overcome this problem another m easurement has to be taken
into account. A measure used in SISCA is the distribution of t he peaks. A map is suppressed
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more when a lot of peaks are found that lie far from each othert han when the same amount
of peaks lie close to each other. The distribution is measured by taking the median of the
squared Euclidean distances from the global maximum M to the other peaks. The other
peaks are pixels with a value higher than a prede ned threshol d (50%) from M. Figure 3.17
shows the effect of taking the peak distribution into accoun t. Without the distribution as
weight the most salient location in gure 3.17 is on the middle red men.

Map weighting in SISCA is done as follows:

Determine the global maximum M.

Count the number of local maxima N above a prede ned threshold from M.
Calculate the squared Euclidean distances from M to N and ndt he median U.
Divide each pixel by the square root of U times N.

Multiply the pixel with the feature weight W.

Figure 3.17: SISCA: Effect of peak counting as weight function (1e row) vs the addition of
the distribution as weight value (2e row). From left to right : smoothed input image (sigma
2), intensity map, color map orientation map, and the salien cy map.

3.1.9 Top Down Cueing

For top down saliency detection the map weighting method is e quipped with a feature
weight W. This weight value can be determined through learni ng in a particular environ-
ment, where a certain feature is more useful than others, or it can be set according to the
search task. By setting a higher value for for example the red/green feature, red objects will
become more salient.
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3.1.10 Conspicuity Maps

Conspicuity maps are created for the three sub-modalities: intensity, color and orientation

(gure 3.12). A conspicuity map is created by fusing the featu re maps of a sub-modality.
These maps are created in [28] by using the same normalization operator as with the feature
maps. Their motivation for creating three separate channel s, intensity, color, and orientation,

and their individual normalization is the hypothesis that s imilar features compete strongly
for saliency, while different modalities contribute indep endently to the saliency map. In [19]
the conspicuity maps are created by rst normalizing the feat ure maps before fusing. The
values are normalized between 0 and the maximum pixel value o f all feature maps of a sub-
modality. SISCA uses xed scale normalization and the same we ight function as for creating

the feature maps. Finally the saliency map is created by weig hting the conspicuity maps and

subsequently fusing the maps using point-to-point pixel ad dition ( gure 3.18).

Figure 3.18: SISCAConspicuity mapsnd the saliency mapFrom left to right, the input image,
the intensity map, the color map, the orientation map and the saliency map. The conspicuity
maps are computed with smoothing factor 2, 8 receptive eld si zes, peaks and distribution
measure as weight function, and feature map normalization f or creating the conspicuity
maps.

24



Methodology & Implementation

3.2 Auditory Saliency Detection

The detection of salient audio is based on the earlier mentioned method of creating an au-
ditory saliency map [32]. This auditory saliency map can be ¢ omputed using the previously
described saliency detection system. Because the visual atention system SISCA also allows
top down cueing, higher weight values can be assigned to feat ure maps that highlight the
appropriate auditory features.

Three auditory features are used for creating the auditory s aliency map. The rst feature is
the intensity. In the visual representation of the audio dat a ( gure 3.19) foreground sound is
represented by the red color. Therefore giving the red-gree n feature maps in SISCA a higher
weight value will result in nding salient audio based on inte  nsity. The second feature is
the frequency contrast. Frequencies are displayed along the vertical axis in the image, which
means that a horizontal line represents a tone on a certain frequency. To detect the frequency
contrast the feature maps that highlight horizontal edges i s given a higher weight value.
The last feature is temporal contrast. Because the horizontal axis represents time, the feature
maps that highlight vertical edges is given a higher weight v alue.

Figure 3.19: Salient audio detection. A cochleogram is used as input image for auditory
saliency detection. Using the visual saliency detection sy stem SISCA asaliency majis created
from the cochleogram. Based on the salient region the start and end of the salient audiois
determined.

3.2.1 Cochlear Filtering

The visual representation that is used for the auditory sali ency map is a cochleogram. A
cochleogram is a visual representation of audio that is lter ed using a cochlea model. In
a cochleogram audio is visualized using three dimensions: along the horizontal axis time,

along the vertical axis frequency and through color the inte nsity.

The cochlea is a snail-shaped organ ( gure 3.20) that is responsible for converting sound

waves into a neural and spectral representation. The cochlea model performs a frequency
analysis like that of a Fast Fourier Transform (FFT). But the advantage over a FFT is that a
cochlea analysis has continuity in time and frequency.

The cochlear ltering method used here is Malcolm Slaney's imp lementation of Lyon's Cochlear
model [48]. The model describes the propagation of sound in t he inner ear and the conver-
sion of the acoustical energy into neural representations. The cochlear has a strong com-
pressive non-linearity over a wide range of sound intensiti es. This model unlike many other
cochlea models takes the non-linearity into account and explicitly recognizes the purpose
of the strong non-linearity as an automatic gain control (AG C) that serves to map a huge
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Figure 3.20: A schematic illustration of the human inner ear and cochlea

dynamic range of physical stimuli into the limited dynamic r ange of nerve rings [38]. The
model combines a series of lters that model the travelling pr essure waves with Half Wave
Recti ers (HWR) to detect the energy in the signal at several s tages of the AGC ( gure 3.21).

Figure 3.21: The structure of Lyon's cochlear model ( gure fr om [48])

An important characteristic of the cochlea is that each part of the cochlea has its own reso-
nance frequency. This has the result of mapping frequencies into the spatial domain.
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3.3 Bi-Modal Attention

Early stage sensor fusion as can be found in the superior colliculus (section 2.1) lies at the ba-
sis of bi-modal attention in vertebrates. The superior coll iculus is an integrator for auditory
and visual information. It fuses these modalities in the spa tial domain through bi-modal
neurons which are responsive to interaural time difference s (ITD) but also show a different
sensitivity to changes in the retinotopic visual map. The ma pping of the interaural cues
to a spatial location (azimuth) is learned by aligning the vi sual location and the perceived
auditory cues [25]. Learning this mapping in contrast to har d coding the relation is impor-
tant when dealing with a morphodynamic organism like the Rep licators. Interaural time
and intensity difference are two cues which are often used fo r auditory localization which
is then called binaural localization. The implemented bi-m odal attention system is based on
binaural cues and a visual salient location.

3.3.1 Binaural Localization

The localization of an object through sound is done via binau ral localization of salient audio.
In order to use binaural localization to steer the robot's at tention, cues must me computed
from salient audio, otherwise background and internal nois e would cause unwanted be-
haviour and wasted processing time.

Salient audio is detected with the earlier described audito ry saliency detection module.

Based on the frequency of the input signal and the frequency b andwidth parameter, called

step factor, a certain amount of channels for different freq uencies are created for an audio
sample. A channel contains the spike rate of the hair cells for a certain frequency in time.

Another parameter to adjust the quality (and computational complexity) of the cochlear out-

put is the decimation factor. With this parameter the output can be sampled at a different
rate. Depending on the step factor and decimation factor a cochleogram of a certain size is
computed for the audio samples of both audio channels. A para meter that can be set for
the cochleogram is to use absolute energy or not. If absolute energy is not used the max-
imum intensity will be set to the highest value of the cochlea r output. Because intensity
is also a salient feature, absolute energy is used to keep therelative difference. From the

cochleograms of the left and right channels salient regions are computed. Based on the start
and end of the salient region a region of the cochlear Itered a udio is used to compute bin-

aural cues from.

Binaural cues

The rst interaural cue used for binaural localization is the intensity difference. The differ-
ence in the salient region is computed by subtracting the lef t cochlear Itered audio from the
right.

The other binaural cue, interaural time difference, is comp uted by means of cross-correlation.
The time difference is computed by correlating frequency ch annels from the cochlear lItered
left and right audio channel. In order to obtain a good measur ement of the time difference
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between the two channels, every sample of the cochlear output must be used which is a
decimation factor with value 1.

A Simple method to calculate the correlation is shown in the f ormula below. Consider two
seriesx(i) and y(i) where i =0;1;2;:::;;n 1. The cross correlationr at delay d is de ned as:

X
[(x()) mx) (y(i d) my)]
r(d)= s S
- (x(@ mx)? S d my)?

(3.1)

Where mx and my are the means of the corresponding series, and delaysd = 0;1;2;::;;n 1.

The location where the correlation has the maximum value is ¢ onsidered as the delay. This
delay is measured in samples. If the maximum value lies to the left of the center then y is
delayed, and if it lies to the right of the center then x is delayed. The length of the correlation
series is twice the length of the original series if delays fr om 0 to n are used. Based on the
computed cross-correlation a correlogram can be created ascan be seen in gure 3.22. The
values of the two binaural cues are normalized to a value betw een 0 and 1, where 0 means
left and 1 means right. Because there is noise and no uniform distribution of cue value
occurrences, it is important to at least determine where the boundaries of the center are to
be able to make a good prediction of the location of an object.

Figure 3.22: Correlogram of two identical signals x and y with n = 5000 where signal y is
delayed.
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Audio-visual integration

For binaural localization binaural cues need to be related t 0 a spatial location. The map-
ping of cue values to a location is done through Hebbian learn ing. As in [25] audio-visual
information is obtained from a visual salient object that em its an auditory salient sound.
The spatial location is obtained from the visual saliency de tection module by translating the
salient location into a degree value in the eld of view, which  ranges from -60 to 60. This
results in 121 locations which are used as input for a Hebbian network. The two binaural
cues are also used as input and have the same amount of inputs as the amount of visual
locations. Because the occurrences of cue values do not have uniform distribution between
0 and 1, the boundaries of the cue values are rst searched for by associating the minimum
(-60 or 0) and the maximum (60 or 121) from the visual input tot he calculated binaural cues.
Because the eld of view is only 120 degrees and sound is perceived in 360 degrees, all the
values above these boundary cue values are classi ed as eithe left or right, respectively -90
or 90 degrees.

This Hebbian learning process is in uenced by a few paramete rs. One of the parameters is
the number of input neurons. To speed up the learning process the visual eld can be di-
vided in less than 121 locations, for instance when 5 locations are used then 2 decode the left
half, one the middle half and 2 the right half ( gure 3.23). Thi s way lesser locations need to
be visited in the visual eld by the salient object to learn the associations of these locations.
Other parameters are the learning rate and the update range. When a lot of input neurons
are used updating nearby connections with a Gaussian functi on can also speed up the learn-
ing process. This method is suitable because of the relation between the real spatial location
and the location of the input neurons.

Left Center Right

Visual Location

0 Interaural-cue

Figure 3.23: An abstract associative network for associating ve visual locations to an inter-
aural cue.
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3.4 Associative Memory

When we look at biology, multi-modal sensor fusion as seen in the nervous system of in-
sects is an associative process [55]. The modalities in whid a perceived object is encoded
have different dimensions in which they represent the featu res of the perceived object. These
could be visual features, audio-temporal features, olfact ory, tactile, etc. Fusing all this infor-
mation will lead to the perception of that speci ¢ object or a ¢ ategory of objects. This way
of fusing information could be based on a hierarchical archi tecture where there is on the
highest level a single neuron that encodes an object in the brain based on a network of all
the features from the different modalities at different abs traction levels. Whether a partic-
ular object (single neuron) is activated by a set of features depends on the associations that
these features have with all other percepts of objects in the memory. A feature that is very
distinctive for a particular object could by itself activat e this object together with all its un-
derlying features from other modalities that encode this ob ject into consciousness. This is
the proposed foundation for the multi-modal cognitive sens or fusion architecture which has
as basis associative memory.

This proposed idea for multi-modal cognitive sensor fusion can be supported by recent dis-
coveries of single neurons that encode multi-modal percept s in the human brain. Quiroga
et al. [44] researched how different stimulus modalities ca n evoke the same "concept” of
for instance a famous person by seeing a picture or by hearing or reading the name. They
showed that (1) single neurons in the human medial temporal | obe (MTL) respond selec-
tively to representations of the same individual across dif ferent sensory modalities; (2) the
degree of multi-modal invariance increases along the hierarchical structure within the MTL.
With their current data it was not possible to provide a concl usive mechanistic explanation
of how such abstract single-cell multi-modal responses ari se, but evidence points toward a
role of the MTL in forming associations by for instance linkin g faces with written and spo-
ken names. Recognized abstract patterns from different mod alities are thus associated in
one location where the concept of an object is stored. In the lower part of the hierarchy
uni-modal neurons like in the inferior temporal cortex (IT)  (which respond to visual stimuli)
encode percepts in a distributed way, and have a limited degr ee of invariance which makes
them responsive to similar but also slightly different perc epts. This type of information from
multiple sensory modalities are associated into a single perceptin the MTL.

In the following section all the separate parts of the propos ed multi-modal sensor fusion ar-
chitecture will be described. Starting at the bottom of the p rocessing hierarchy, a distributed
clustering and pattern recognition method will be describe d that resembles the function of
the IT neurons / Kenyon cells, followed by the description of a n associative memory module
that creates a multi-modal percept like in the MTL / mushroom b odies.

3.4.1 Adaptive Resonance Theory

The Adaptive Resonance Theory (ART) is a theory about inform ation processing and storage
in the brain. It was developed by Grossberg and Carpenter [15]. Principles derived form an
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analysis of experimental literatures in vision, speech, cortical development, and reinforce-
ment learning, including attentional blocking and cogniti ve-emotional interactions, led to
the introduction of adaptive resonance as a theory of human c ognitive information process-
ing [15]. The rst version of ART also called ART-1 is an unsupe rvised binary clustering or
pattern matching system. The basic model of all the ART systems ( gure 3.24) consist of a
short term memory input pattern (F1) which is matched agains t patterns that are in the long
term memory (F2). An input pattern could either be in resonan ce with a long term memory
node, which means that the input pattern matches the pattern in memory to a satisfying
degree, or there could be no pattern in memory that resembles the input pattern which then
leads to the storage of the input pattern as a new memory node. This match-based process
is the basis of the ART system that deals with the stability-p lasticity dilemma.

T

F2 100000

w

F1 Q{QQQ /

Input=(i,,i,,...,

Figure 3.24: An abstract representation of the ART network. The input pattern has M ele-
ments and is put in short term memory F1. The pattern from F1is compared to the patterns
in long term memory F2. P is the vigilance parameter which spe ci es the amount of resem-
blance needed between F1 and a F2 node for a match.

Within the ART system an F2 memory or category node is chosen as possible candidate
based on its similarity with the input pattern. The similari ty is denoted by the signal value
T; (see equation (3.2)). The memory node with the highest signal value is selected for a
resonance test. The ART system provides stability through t he matching criteria parameter
P called vigilance. With the vigilance parameter the amount o f resemblance needed for a
match can be set in the form of a minimum con dence value (see eq uation (3.3)). With a low
vigilance value there has to be less resemblance to have resaance, this leads to fewer and
more abstract memory nodes. Whereas a higher vigilance value will lead to more memory
nodes that only have resonance with very similar input.

Learning within the ART system is done by storing a new input p attern if no resonance
with F2 is found, or by updating the memory node which is in res onance with the input.
Updating the weights of the existing node is done in such a way that it is monotonically
non-increasing, it will always be able to classify earlier | earned patterns. If fast learning is
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used the weights of the memory node are updated in a way that th e input pattern just falls
within the memory node's boundaries (see equation (3.4)). | f slow learning is used then the
memory node is updated only a small fraction in the direction of the presented input pattern.

ART 1
Category choice:

7= Wi (3.2)
W)

where T; is the signal value, | is the input vector, w; the weight vector of the Jth F2 memory node, and the
signal rule parameter

Match criterion:

I\ wij
I
Fast Learning:

wren = |\ o (3.4)

(3.3)

During the years several types of the ART systems have been developed. After the binary
ART, ART-1, a variant was made to support continuous inputs w hich is called ART-2 [8]. A
streamlined version of the former is ART-2A [11], this versi on needs less computation time
and has only slightly worse qualitative results. Fuzzy-ART [7] uses fuzzy logic in pattern
matching and has a means of incorporating the absence of features into pattern classi ca-
tions through complement coding. In Fuzzy ART the logical AN D\ : intersection is replaced
by the fuzzy AND #: minimum.

Preventing category proliferation while monotonically no n-increasing the memory node's
weights is in Fuzzy-ART achieved by using a complement coded input (see equation (3.5)).
A complement coded input pattern is a vector with normalized input values [0,1] where the
second half of the vector consists of the complement values of the rst half. The sum of
the vector equals the length of the vector. In gure 3.25 it is s hown that the cluster size is
enlarged when the weight values are updated by taking the max imum vector values of two
compared patterns.

le=(ly 0o tml Il il Iy) (3.5)

Figure 3.25: Fuzzy art cluster representation. (a) Having a two dimensional complement
coded input vector, each weight vector w; has a geometric interpretation as a rectangle R;
with corners (u;;Vv;j). (b) Updating the weight for input  a with fast learning, R; expands to
R; a, the smallest rectangle that includes R; and a, while satisfying the match criterion.
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3.4.2 ARTMAP

An extension to the ART network for supervised learningisth e ARTMAP [10]. The ARTMAP
provides means to steer the clustering process by a seconday ART network with the cor-

rect output. The correct output classes for each input patte rn is learned with an associative
network. The structure of the ARTMAP is as follows, it consist s of an ART network for
classifying input patterns let's say ART 4, a secondary ART network with the correct output

say ARTy, and an associative learning network that links ART 5 to ART} called the map eld

(‘gure 3.26).

map field F*°

3
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Figure 3.26: An abstract representation of the ARTMAP networ k. This ARTMAP consists
of two ART networks ART 2 and ARTP. ARTP is the supervisor network that is able to send
a reset or match track request to ART? when the output of ART 2 is inconsistent with the
expected output calculated by ART ° through map eld F 2°.

The ARTMARP is trained by providing an input pattern  a for ART 5 and the correct output b
via ART . ART, processes the input pattern by nding a memory node J thatis in resonance
with the input based on a minimum con dence value p,. When no match is found a new
node is created in memory that resembles the input pattern. T his memory node is then
connected via a map eld node X to the output node K of ART, which is established with

the same matching processes. In the case where there is a mattfound in ART ,, the winning

memory node J will activate via its weights Wjab a map eld node X, if ARTy, is active,
then only if output node K from ART y, activates the same map eld node X via its one-to-
one pathway, F 2 will become active. Similar to ART, a vigilance parameter p2 is used to
determine if the activation is in resonance.

If ART 5 activated a different map eld node than ART |, equation (3.6) is not satis ed and a
match tracking process is started in ART 4. A better match is searched for by slightly increas-
ing the con dence or vigilance parameter p, so that the previous winning memory node is

no longer a candidate. This match tracking process will even tually end in a correct match or
a new memory node that will be associated via the map eld witht he correct output node
of ARTy,. With fast learning the weights wﬁ(b from ART 4 node J to ART, node K is set equal
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to 1, which makes it a permanent association.

ij ab
S 3.6
K] p (3.6)

where

g K\ wjalb if the Jth F§ node is active and FJ is active
wjalb if the Jth F£ node is active and FJ is inactive

2 K if F&isinactive and F2 is active

' 0 if F{isinactive and FJ is inactive

X =

Testing is done by providing an input pattern for ART 4 after which a winning memory node
is selected using a Winner Take All (WTA) method. This winnin g node activates the associ-
ated memory node of ART , via the connections in the map eld. The output of this ARTMAP
could be a class label associated with the input pattern via A RT,

Many variants of the basic ARTMAP networks have been created to name a few: fuzzy
ARTMAP [9], ART-EMAP [14], ARTMAP-IC [12], and the distributed ARTMAP [13]. Com-

parative analysis of these networks has led to the Default AR TMAP [6] and the Default

ARTMAP 2 [2], which has a simpli ed design and a better performa nce in many applica-
tion domains. The default ARTMAP is the same as fuzzy ARTMAP dur ing training, but

uses a distributed winner selection during testing. ARTMAP- IC is the same as the default
ARTMAP plus instance counting, this biases a category node's test set output by the number
of training set inputs coded by that node. The distributed AR TMAP uses a distributed win-

ner selection during both training and testing and also uses instance counting. The Fuzzy
ARTMAP is the basis for all these ARTMAP variants, and uses the e arlier described WTA
method. The difference between the Fuzzy ARTMAP and the rst AR TMAP is the use of
Fuzzy ART networks for pattern recognition. The default ART MAP also implements the
match tracking search procedure, with the baseline vigilan ce parameter equal to zero for
maximal code compression, and uses fast learning.

The ARTMAP is well suited for unidirectional supervised lear ning tasks where there can be
a many-to-one mapping of input patterns to output classes. D ue to match-tracking and the
match criteria in the map eld, bidirectional and many-to-ma ny associations are not pos-
sible. A variant of the Fuzzy ARTMAP that deals with this probl em is the Bi-directional
ARTMAP (BIARTMAP) [5]. By introducing a second map eld that han dles the associations
and the match track process in the other direction, the BIART MAP is able to handle bidi-
rectional mappings ranging from one-to-one to many-to-man y. With BIARTMAP both ART
networks, ART ;5 and ART}, can be either used as input or as output network.

Although the associative capabilities of the BIARTMAP netwo rk starts to look more like the
biological associative process, it still lacks on a few aspects. One main aspect that all the
ARTMAPs have is supervised learning. In order to use associative memory in an ongoing
learning setting, where there is no separate learning phase, unsupervised associative learn-
ing must be possible. Another important aspect is the lack of being able to associate multiple
ART networks in a network that is multi-directional. BIARTMA P enables bidirectional as-
sociation and lookup by means of a second map eld. Increasing the number of map elds
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together with the number of input ART networks seems not only very unlikely from a bio-
logical perspective, but also unnecessary complex and computationally expensive. Because
the BIARTMAP is based on the Fuzzy ARTMAP it also does not use a di stributed winner
selection in the testing phase. A distributed winner select ion as can be seen in the default
ARTMAP leads to a better performance and is also more plausibl e from a biological perspec-
tive.

In the next section a new variant of the default ARTMAP will be p roposed that is capable of
associating multiple ART networks with unsupervised learn ing. This new ARTMAP, called

the Multi-directional ARTMAP (MJARTMAP), has more similaritie s with the biological as-
sociative processes described earlier. Also analogies betveen the hierarchical structure of
this multi-modal sensor fusion architecture and the hierar chical structure of the MTL can be
found.

3.4.3 Multi-directional (Un-)Supervised ARTMAP

ART networks have proven themselves to be useful as an unsupervised learning mecha-
nism when ongoing learning is needed because they don't suff er from the stability-plasticity
dilemma. And because ART is also used as a model to describe canitive memory processes,
it seems very suitable for the low level building blocks of th e cognitive sensor fusion archi-
tecture. This sensor fusion architecture will consist of a h ierarchy of ART networks which
are linked by associative learning.

Multi-directional association

Associating the outputs of all the ART networks is done in a si ngle associative network
called the map eld (gure 3.27). This network can associate mu lItiple supervised and un-

supervised ART networks. The difference with the default AR TMAP is the possibility to

have one-to-many and many-to-many mappings in the associat ive network. The match-
tracking process in the default ARTMAP only allows a match-tr acking process for one net-
work, ART 5, and only accepts the ART class that was already associated wth this "class
label”. With that match-track process it is not possible to h ave an input pattern that belongs

to multiple "class labels”, which is possible in reality. Fo r example a single sound pattern
can be created by different objects, and thus must be associged to multiple classes.

The MdARTMAP is able to use supervised learning with match-tra cking, but it also allows
the binding of one ART class to multiple ART classes of anothe r ART network. One-to-many
mappings in multiple directions is made possible through di  stributed winner selection using
multiple ART network classes. When input patterns are prese nted to all the ART networks,
their output classes, which are connected to map eld neurons , activate the associated neu-
rons in the map eld (associative network) (see equation (3.7 )). The associative neuron with
the highest activation value (see equation (3.8)) is seleced as winner.
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Figure 3.27: An abstract representation of the MAARTMAP netwo rk. This MAARTMAP
consists of three ART networks ART?, ART? and ART®. The output classes of each ART
network are associated in the map eld F3. A match tracking pro cess can be initiated by
one of the highest ranked ART networks when the output of alow erranked ART network is
inconsistent with the expected output calculated by the hig her ranked ART network through
map eld F3.

Map Field node activation function:
Wi
Wi

T i
Act(X) = Wi+ jART networksj 3.7)

where W is a vector with all active connections to map eld node X
and the normalized connection strength w; [0; 1]

Map Field winning node selection:
winning _node = arg m)?x(Act(X ) (3.8)

where X Map Field nodes

The activation value of a map eld neuron depends on the number of connections and
the strength of these connections to associated classes. Té connection strength is learned
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through hebbian learning. When a map eld neuron is activated by at least two classes
then the connection strength from the neuron to the classes is increased. Classes that are
often perceived together have a high connection strength, but a connection with a high con-
nection strength can never give a higher activation value th an two connections with a low
strength. This means that the number of ART networks that vot e for a certain associative
neuron weighs more than the strength of the association of a certain ART network class.
This weight function ensures that very often perceived clas ses will not automatically lead to
one "output class”. If a system only encounters red robots th at make a certain sound and
"give” energy, the system will have a high connection streng th for red robots and the "give
energy” property. If a red robot is encountered that makes a d ifferent sound a new associa-
tion will be made based on the ndings whether this robot gives energy or not. If it learns
that this robot does not give energy, seeing a red robot with t hat different sound activates the
later learned association, based on the number of connections and not on the high connec-
tion strength of the red robots class to the neuron that is associated with the "gives energy”
class. Therefore the map eld is updated based on the followin g rules:

if Act(winning _node) >= jART networks j then
increase strength of active connections W to winning _node

else if (Act(winning _node) >= 2) and (Act(winning _node) >= jWj) then
connect ART classes to winning- node and increase connection strength of W

else
create a new map eld node and connect it to all ART output clas ses

(Un)-Supervised Learning

The ARTMAP is created to steer the clustering processes when training examples are avail-
able. But since the ARTMAP is based on the ART network, which is known for its unsuper-
vised learning capabilities, it is also suitable for unsupe rvised learning. The hardest part of
unsupervised learning with an ART network is nding the right  vigilance parameter. Find-
ing this parameter is an iterative empirical process where t he trade-off between generalizing
and abstracting has to be made. Such a process could be of evaltionary nature, but using
knowledge about the future data could also give satisfying r esults.

Information from modalities differ in resolution, varianc e and thus in reliability. To cope
with this the vigilance parameter can be tuned, but this only works to a certain extent. With
knowledge about the reliability of the information sources / modalities, the individual ART
networks in the MAARTMAP can be ranked and are able to steer each other's search process.
When using a high resolution camera and a low quality microph one, con icting predictions
made based on information from those modalities will be in fa vour of the camera.

Match-tracking for reliability ranked ART networks is only a ctivated when there is a mis-
match between the outputs of the ART networks. This mismatch occurs when the outputs
of the ART networks both have associations to other output ¢l asses than the currently acti-
vated ones. The most reliable network will then initiate the match-track process for the other
network(s). A new match will eventually be found, this could either be the output class that
was already associated with the output of the supervisor net work(s), or a new output class
could be created and also associated with the output of the su pervisor network(s). Because
no initial zero vigilance is used, the match-track process d oes not force a speci ¢ outcome.
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By adding a reliability measure to each ART network both supe rvised and unsupervised
clustering can be obtained.

When the MDARTMAP consists of equally ranked ART networks then match-tracking is not
used. Associations are made based on the classi cations of the unsupervised ART networks.
A well tuned vigilance parameter and a distributed winner se lection method are important
for this unsupervised process. The conditions needed to ini tiate match tracking are:

Unequal ranked networks
Highest ranked ART networks activate the same map eld neuron X

Lower ranked ART network does not activate map eld neuron X

The association process

The association of ART network classes focusses on simultareous perceptions and retrieving
missing perceptions based on learned associations. In the Dllowing part a detailed descrip-
tion of the (un)-supervised association process will be giv en for multiple ART networks.

Based on the outputs of the ART networks, called ART classes,associations are learned using
the following steps:

1. For each ART class calculate the activation of associatednap eld nodes

2. If no map node is activated, then associate the ART classedo a new map eld node
3. If all the ART classes activated the same node then updateW of the winning node X
4

. If all ART classes activated X except the new connectionless ART classes then:
(a) Associate the new ART classes toX if X has no associations with those ART networks
and update W
(b) Otherwise create a new map node and associate all the ART dasses

5. If not all ART classes activate X then:

(a) Create a new map node and associate all ART classes if:

All networks are equally ranked.
Or the highest ranked ART networks (supervisors) do not all a ctivate X

(b) Match-track all lower ranked ART networks if all supervi sors activate X

i. Update the connections W if all ART classes activate X
ii. Associate new ART classes toX

Retrieving associated data is done using a distributed winn er selection method. When for
instance two of three ART classes are given as input, the third class is retrieved based on the
learned associations. As in the learning process a winning map eld node is selected based
on the number of connections and secondly the connection strength. This winning map eld
node activates the ART class with the strongest connection from the ART network that was
selected for retrieval.
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3.4.4 Distributed Clustering

ART networks are known for dealing with the stability-plast icity dilemma but also for their
lack of handling certain invariances. The classi cation alg orithm of the used Fuzzy ART
network performs a one to one comparison of the input vector w ith the stored memory
nodes. Any shifts in the input pattern will lead to a wrong cla ssi cation. Also partially
observed patterns can not be classi ed. This puts a high constraint on ART for using it in
real-time where ongoing classi cation is needed. For exampl e when recognizing sound in
a dynamic environment (real world), partly observed and shi fted sound samples are often
encountered.

To overcome these problems a distributed approach is used wh ere features are clustered that
are shift invariant. In this approach an ART network is used t o recognize the features of a
class which are all associated to that class via the previousdescribed ARTMAP.

The features (F) that represent the class must of course be as descriptive ard invariant as
possible. Each feature can belong to multiple classes, and @ch class has multiple features.
To be able to classify a set of orderless features a distributed winner selection method based
on all the features is used for the MAARTMAP. Based on all the fea tures there could either
be a positive classi cation in which the class is known in memo ry, or there could be no clas-
si cation in which a new object is encountered. Learning new p atterns with this distributed
clustering network (DCN) is done by rst performing a test whe ther a set of features will
lead to a reliable classi cation. If a class is found then all f eatures are given as input to the
ARTMAP subsequently together with the associated class. The connection strengths to asso-
ciated features are then increased and connections to the chss are created for new features.

The distributed winner selection method does not calculate the winning map eld node,
but the associated winning ART class which is the "class label” for the input pattern (see
equation (3.11)). This is done because multiple map eld node s are connected to one ART
class. The activation value of the winning ART class (see equation (3.9)) is used to determine
the probability whether this class belongs to the input patt ern (see equation (3.10)). The
probability is measured by dividing the activation value of the winning class by the total
amount of class activations. This probability value will on ly be accepted if the amount of
associated features is above a threshold which is dependenton the number of input features.

X
Act(class; F) = (wi) (3.9
i=1
where fwy; :;;whg ConEdge(activeN odes; clasg

activeNodes ConNode(F; MapN odes)

Act(class;F)

P (classjF) = M (3.10)

Act(class;; F)
i=1

winning _class = arg n?ax(P(cIasst ) (3.11)
class
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With this distributed classi cation method not only shift in  variant but also sets of features
can be classi ed. When classifying a temporal pattern each point in time can be used as
separate feature for the feature set. The DCN does not learn the order of features in a set.
Therefore in order to classify a pattern for which the sequen ce is important (e.g. audio)
preprocessing is required.

3.4.5 Hierarchical Associations

With the previous described DCN it is now easy to see that a hie rarchy of associations can
be formed when combined with the MAARTMAP ( gure 3.28). The Fuzz y networks used in
the MAARTMAP can be replaced by DCNs, which will extend the MAART MAP to be able
to classify shift invariant and temporal patterns. This can be realized by using the output
from the DCN, which is an ART class, as input for the MUARTMAP. Fo r computation time
and complexity only the winning ART class of the DCN is used fo rthe associations, instead
of a distributed output based on the activations. In gure 3.2 8 a hierarchical MAARTMAP
is shown. In this gure the ART networks ART 2 and ARTP from gure 3.27 are replaced by
two individual MAARTMAPs with each two ART networks. Each MAART  MAP has a map
eld in which features from ART *! are associated to a higher class in ART. These higher
classes (from ART?, ART®, ART®) are subsequently associated in the map eld of the main
MdJARTMAP.

3.4.6 Conclusion

In this section a new type of ARTMAP was proposed which is capab le of creating multi-
directional supervised and unsupervised associations. By extending it with a distributed
clustering network it is capable of classifying temporal pa tterns as well as being able to
handle more invariances than former ARTMAPSs. The hierarchic al structure of this network
resembles the structure of the medial temporal lobe in the hu man brain, and the mushroom-
bodies in the Dorsophila nervous system. Analogue to those systems distributed uni-modal
encoding of features is done with a limited degree of invaria nce to the feature patterns,
followed by the association of the more abstract uni-modal p ercepts into a multi-modal con-
cept. Inthe next sections the implementation of the distrib uted clustering network for sound
and object recognition will be described.
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Figure 3.28: An abstract representation of the sensor fusion architecture using a hierarchy
of combined MAARTMAP networks. This MAARTMAP consist of a ART net work and two
MdARTMAPs which each consist of two ART networks. The rst MAARTMA P consists of
ART2! and ART?2 and the second MAARTMAP of ART ? and ARTP. The output values of
ART2, ART? and ART¢ are all associated in the map eld MF with connections W.
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3.5 Sound Recognition

One of the modalities used in cognitive sensor fusion is soun d. When an interesting sound
source is detected using the earlier described bi-modal attention system, sound patterns
must be learned to be able to distinguish objects based on the sound they emit. To be able to
learn and recognize sound in a un-constraint real-time sett ing, a robust un-supervised sound

recognition method with ongoing learning is needed. In this section such a sound recogni-
tion method will be proposed. First the preprocessing phase with the use of reservoir com-

puting will be described followed by a description of an un-s upervised sound recognition

system build with the previous described MAARTMAP.

3.5.1 Reservoir Computing

The Echo State Network (ESN) is one of the well known recurren t neural networks (RNN)
used in reservoir computing. RNNs have the ability to model h ighly non-linear systems, and
are capable of processing temporal information. The hard pa rt of using RNNs is training the
network. Three different types of RNNs have been described t o overcome this problem, Echo
State Networks [29], Liquid State Machines (LSMs) [39], and Back propagation Decorrelation
(BPDC) [49]. With reservoir computing a randomly connected RNN is used as a reservoir
that is not trained but read out by a simple classi cation laye r. The reservoir has the function
of a kernel, that is: projecting the input to a higher-dimens ional space in which it is better
separable. The advantage of a reservoir in comparison to kernel-based methods (e.g. SVM)
is the ability to incorporate temporal information.

Figure 3.29: General reservoir computing architecture. The following connection weight vec-
tors are labelled in the gure W/et : input to reservoir, W_.'? : input to output, W/ES: reservoir
to reservoir, W,23s: a bias value to the reservoir, W/S: reservoir to output, W2 output to

- res -
reservoir, W24t: output to output, W2is: bias value to the output.

Reservoir computing has been successfully implemented in several application domains. It
has for example been used in dynamic pattern classi cation, t one generation, object track-
ing and prediction, reinforcement learning, and also Digit al Signal Processing (DSP). For
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an overview read [46]. Because of its temporal processing cgabilities, and successful im-
plementations in speech recognition [40, 47, 53], reservor computing is chosen for pre-
processing the microphone sensor data to obtain better classi cation results.

3.5.2 General Reservoir Model

A generic reservoir computing architecture is shown in gure 3.29. During reservoir sim-
ulation the reservoir states and output states with teacher forcing are computed with the
following equations:

X(t+1) = f(W/EX(t)+ WP u(t) + Wly(t) + W2as) (3.12)

P(E+1) = WESX(t+1)+ Woku(t) + WaLty(t) + Woas; (3.13)

where x(t) is the reservoir neuron state vector for time step t, u(t) the input vector, f the neuron activation function, y(t) the

teacher input vector, and y(t) the state of the output neurons.

All the connection weights are randomly generated using som e kind of distribution of con-
nectivity and connection type, except for W/ which are obtained through learning.

3.5.3 ESNvs. LSM

The primary goal for developing an LSM was to provide a biolog ically plausible paradigm
for computations in generic cortical microcircuits, while ESNs have been designed for high
performance engineering tasks. LSMs therefore consist of biologically inspired spiking neu-
rons with a small world interconnectivity pattern. Descrip tions of ESNs can be found with
analogue neurons and several different interconnection st ructures. For implementing reser-
voir computing in the sensor fusion model, the most importan t aspect is the performance
in relation to computational complexity. Verstraeten et al . [52] compared reservoirs using
different node types, for a broad range of parameter setting s and tasks. They concluded that
the computational cost of a spiking reservoir is higher but t he performance was better on a
speech recognition task of isolated digit recognition. The y also showed that the memory ca-
pacity of both, spiking and analogue, reservoirs increases monotonically with the size, and
found a strong dependence on the spectral radius for analogu e neurons.

3.5.4 Implementation

Due to the computational constraints of the sensor fusion sy stem, an ESN is used for pre-
processing audio data. The main architecture of the ESN foll ows the generic reservoir de-
sign. The parameters used for the reservoir are based on work of Jaeger [30] and Venayag-
amoorthy [51] for the general ESN working, Holzmann [24] and Verstraeten [53] for the

combination of an ESN with audio processing and recognition , and Morse and Ziemke for

the combination with associative memory and robotics [41].
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The connection weights are generated using a connectivity parameter. With a certain con-
nectivity the connections between the neurons are generated with weight values between -1
and 1. The reservoir and output neurons can be built from diff erent types of neurons they
can be sigmoid or linear and can optionally be leaky integrat or neurons. The state of a leaky
integrator reservoir neuron with leak rate  is calculated using the following equation:

X(t+1)= F(W [ Ex(®)+ Wu®)+ Waly(®)+ x(t) (1 ) (3.14)

The implemented state update equation is different from the generic update equation, be-
cause no teacher forcing and feedback connections are used vhen simulating the reservoir.
An important property of the reservoir is the spectral radiu s. The spectral radius is the
largest absolute value of the eigenvalues of the reservoir w eight matrix. To obtain the echo
state property, the network must be on the edge of stability, this is obtained with a spectral
radius between 0 and 1. A spectral radius of 0.8 seems to give agood performance for a
variety of tasks [51]. The reservoir weights are rst normali zed using the largest eigenvalue
of the reservoir, and subsequently scaled using the desired spectral radius.

Sound processing

In order to classify complex sound patterns an ESN can be used to transfer the non-linear
separable sound patterns to a higher dimension in which it co uld be linearly separable. Ver-
straeten et al. [53] proved that cochlear ltered sound is a go od representation to use for
sound recognition with an LSM. The cochlear data can be fed int o the reservoir by aligning
the channels (frequencies) of the cochlear data to the input of the ESN. Each time step one
frame of the cochlear data is entered into the ESN, which changes the states of the reservoir
neurons that are connected to the input neurons. The state of other reservoir neurons that are
not connected to the input neurons are changed due to the recurrent connections, no teacher
input or feedback connections are used. Based on the states 6all the neurons, patterns can
be recognized with a readout function.

Verstraeten et al. [53] successfully used an LSM with cochlear Itered input data to recognize
isolated spoken digits. The conversion of analogue cochlear values to spike trains was done
using a lter encoding scheme (BSA). The best performance was obtained with a linear clas-
si er as readout function. This showed that the LSM was capabl e of transferring the cochlear
Itered data to a linearly separable representation. Previo us studies [52] have shown that an
LSM performs better on temporal patterns than an ESN. Theref ore experiments must be con-
ducted to determine whether an ESN is able to transfer the cochlear Itered datato a linearly
separable dimension. The experiments must also show to what extent an ESN can handle
noisy and partially observed input patterns. To only testth e performance of the ESN a linear
classi er is used as readout function.

3.5.5 Experiment

To test the separability of the ESN, a speech recognition tak is created using a dataset with
250 samples of 5 english vowels spoken by 50 different male speakers, taken from the Hille-
brand vowel dataset [23] . The words used are: "hae”, "her”,” hih”, "hoo”, "huh”.
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A second task is created for testing the robustness of the network. In this recognition task
a spoken word needs to be recognized which is transformed wit h an effect. The network
is rst trained with 9 spoken digits in Maori after which it ne  eds to recognize different in-
stances of the spoken digit "iwa”. The audio sample "iwa” was edited and 11 different
versions were used for testing the robustness of the the network. The applied editions are:
reverberation (auditorium template), rst half of the sampl e, last half of the sample, 150%
amplitude, 125% pitch, telephone and AM effect, anger and ¢ horus effect, highpass Iter
(AM template), pink noise (SNR=-5.6), white noise (SNR=-0.5 DB), and "iwa” spoken by a
female.

The audio samples are rst Itered using the earlier described cochlear model [48], with dec-
imation factor 130, and step factor 0.25. The Itered audio is used as input for the reservair,
using 84 input neurons, and a xed sample size of 60. The ESN par ameters used are shown
in table 3.1.

Table 3.1: Default parameters of the implemented ESN.

Default ESN parameters
input connectivity 0.1
reservoir connectivity 0.5
feedback connectivity 0.0
reservoir activation function tanh
output activation function linear
spectral radius 0.8
input shift 0.0
reservoir shift 0.0
feedback shift 0.0
input scale 1.0
reservoir scale 1.0
feedback scale 1.0

3.5.6 Classi cation

To test the performance of the reservoir, a linear classi cat ion method, ridge regression is
used. The weights of the readout neurons are calculated as followed:

WOt = (R+ 21) 1p; (3.15)

where R = S0S is the correlation matrix of the extended reservoir states S = (X + U), 2 is the smoothing factor, | the
identity matrix, R ! denotes the inverse of the matrix R, and P = S is the cross-correlation matrix of the states S and the

desired output D, which is obtained using Fisher labelling [3].

The actual classi cation is done using a linear projection of the input u(t) and reservoir states
X(t) to the output y(t) using weights w:

y(t) = w s(t) (3.16)
The winning class is selected using winner-take-all (WTA) s election, by taking the maximum
value of the output y(t) over time. The classi cation performance was also tested using a
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winning class selection that computed the winner over a pred e ned amount of samples, and
a nal class selection using WTA. But the performance of this m ethod for several samples
sizes was not better than when computing the winning class ov er all the samples.

3.5.7 Results and Conclusion

For testing the reservoir separability, several reservoir sizes where used while conducting
the speech recognition task with the 5 enlish vowels. The reservoir that had the best per-
formance was the one with size T/10 (T=sample size), which is in the range that Jaeger [30]
suggested. The average performance was a recognition of 96%on the training set and 95%
on the test set, with 10-fold cross validation. Considering the dataset the network perfor-
mance is average/good. Better results have been obtained using an LSM Verstraeten [53].
But considering the goal of the network: pre-processing wit h "low” computational costs, an
ESN of 6 reservoir neurons is very suitable.

The robustness of the reservoir was tested by training the re servoir on every spoken digit
once, and testing it several times on the edited versions of the word "iwa”. For this task
the best reservoir size was between between 300 and 400 neuras, which is more than the
suggested amount by Jaeger. The average score on the trainiig set was 100% and on the
test set 65% (see table 3.2). The ESN was not always able to c&sify the word "iwa” with

a pitch of 125%, or spoken by a female correctly. It seems thatthe reservoir is sensitive to
shifts between neurons in the input vector. It also did not re cognize the version with white
noise correctly, and sometimes the pink noise version was mi staken for a word that looked
like it ("wha”") because of the noise. The ESN showed to be able to generalize and still have
great separable capabilities. But a problem encountered is the use of the ESN for different
tasks. Different tasks demand different reservoir sizes. A larger size is needed to be able
to recognize noisy samples, and smaller reservoirs are needed to generalize for inner class
variance.

Table 3.2: Classi cations scores of the robustness sound clasi cation task.
Results robustness

sample score
female iwa 0%

reverb 100%
1st half 99%
last half 97%
150% amp 100%
125% pitch 0%

telephone and AM | 100%
anger and chorus | 100%

highpass Iter 100%
pink noise 20%
white noise 0%
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3.5.8 The ART of Sound Recognition with Echo State Clusterin g

Sound recognition with an Echo State Network (ESN) was prove n to be a suitable method
for off line sound classi cation. But to use an ESN for sound re cognition on an autonomous
robot, unsupervised ongoing learning and classi cation is n eeded. A problem that is en-
countered with ongoing learning is the stability-plastici ty dilemma. A method suitable for
dealing with this problem is the earlier described MAARTMAP.

Instead of using linear read-out neurons or a linear classi e r for an ESN, pattern recognition
can be done by classifying each echo state with the Fuzzy ART network from the distributed
clustering method. For this cochlear ltered sound data is rs ttransferred into echo states
which are then clustered separately and associated with the MAARTMAP.

Performance test for sound recognition with the MAARTMAP have been done for super-
vised and unsupervised learning. The difference with unsup ervised learning is that the
learning phase does not incorporate the distributed test to nd the most likely class. It as-

sociates all the found echo state ART classes to the given somd class label. The overall
performance of the system is very dependent of the parameters of the individual compo-

nents which are related to each other. The parameters (see tdble 3.3) as well as the randomly
generated reservoir topology are empirically determined.

Table 3.3: Parameters used for the echo state MAARTMAP sound recognition test.

Cochlear parameters
step factor 0.6
decimation factor 130
ESN parameters
input connectivity 0.2
input scale 3333
reservoir size 6.0
ART parameters
vigilance 0.97
class probability threshold | 0.5

With the parameters of table 3.3 a recognition score of 89% was achieved on the spoken
word classi cation task, using a dataset with 250 samples of 5 english "words” spoken by
50 different male speakers. The performance of the system with unsupervised classi cation
was 70%. For these tests 10-fold cross validation with the same reservoir topology was used.
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3.6 Visual Object Recognition

The second modality used in the cognitive sensor fusion arch itecture is vision. With sensor
fusion the concept of an object must be formed using visual an d auditory information. Before
a visual object can be recognized it rst has to be learned. Aut onomously learning objects in
a complex dynamical environment will need some guidance if t here is minimal interaction
with this environment and the objects in it. Getting to know a n object in the real world is
normally done by interaction, this could be for instance by t ouching it, picking it up, or by
looking at it from different angles. This way all the differe nt properties of the object can
be learned. By interacting with the object a better segmentation of its properties and the
properties of the surrounding can be established. When no in teraction is possible with an
object active sensing can be used to explore an object's visal properties. With active sensing
an object is observed from different angles to get a more complete visual representation of
an object. The current sensor fusion architecture will focu s on the recognition of objects
in a single camera image, which can obviously be extended to an active sensing system
based on the control architecture. The rst step in the object learning and recognition phase
is the detection and segmentation of an object from its surro unding. After an object has
been detected and extracted its characteristics are extrated, classi ed and associated to the
concept that represents that object.

In the next sections the phases for visual object recognition from a camera image will be de-
scribed. The rst section will be about the detection and segm entation of an object, followed
by the feature extraction method. In the last part a method fo r clustering and associating
features will be described.

3.6.1 Detection and Segmentation

Extracting features and classifying each frame from a camera image is computationally ex-
pensive and biologically not realistic. An attentional sys tem as described in previous sec-
tions is therefore needed to select relevant information fo r processing. This attentional sys-
tem does not only point out the location of a visual interesti ng object but also highlights the
most interesting parts via a saliency map. The saliency map p oints out a salient object which
is inherently separated from its background. The saliency m ap is therefore used as segmen-
tation method for objects in an image. The extracted salient location will be used for further
processing which will be described in the next section.

3.6.2 SIFT Feature Extraction

One commonly used algorithm to detect and extract distincti ve features from a visual ob-
ject is Lowe's Scale-invariant feature transform (SIFT) [37]. The features extracted with SIFT
are invariant to scale and rotation and partly invariant to i llumination and 3D camera view-

point. The SIFT features, called key-points, are highly dis tinctive and only a few features

are needed to be able to recognize an object. Even when only a art of an image or object
is visible, SIFT is able to recognize the object when the number of matching features is at
least three. SIFT has proven to be a useful method for many image matching applications,
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to name a few, object recognition, robot localization and ma pping, and 3D scene modelling.
Because of its robustness and accuracy it is chosen to ful | th e visual object feature extraction
task in the sensor fusion architecture.

The SIFT feature extracting process follows a cascading ltering approach, which means that
operations that are expensive are only applied to locations that pass a test. A set of image
features is created with the following process:

1. Scale-space extrema detection: First a Gaussian scale pyramid as described in section
3.1.1 is created to perform a Difference of Gaussian (DoG). 1o nd interesting points
every pixel in the DoG is compared to its eight neighbours and to eighteen neighbours
in adjacent DoG levels.

2. Keypoint Localization: A detailed inspection is performed to see whether these in-
teresting locations, keypoints, are stable. Keypoints are rejected when they have low
contrast or are localized along an edge.

3. Orientation assignment: Based on local image gradient directions orientations are as-
signed to the keypoints. The keypoints are transformed rela tive to the scale and as-
signed orientations to make them invariant to these transfo rmations.

4. Keypoint descriptor: A descriptor ( gure 3.30) is computed for a local image region
with the size determined by the scale at which the keypoint wa s detected. It is com-
puted by calculating the gradient magnitude and orientatio n in the sub-regions of the
region.

Figure 3.30: On the left the rst step for computing the keypoi nt descriptor is shown. From
the subregions around the keypoint the gradient magnitude a nd orientation are computed.
The 2x2 subregions on the right contain orientation histogr ams which is a summation of the
inner-subregions (taken from [37]).

3.6.3 The ART of 3D Object Recognition with SIFT Keypoint Clu  stering

Object recognition with SIFT is often done by matching the ex tracted keypoints to all the
keypoints in a database using nearest neighbour classi cati on. All the keypoints extracted
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from learned images are stored in the database. With a typical image of 500x500 pixels
2000 stable keypoints can be detected (dependent on the paraneters and image content).
These databases are therefore very large which leads to longsearch times and much storage
consumption. To overcome these problems clustering of keyp oints can be used to reduce
the database size. Kootstra [35] showed that keypoint clustering can indeed be used to re-
duce the database size. The only drawback in Kootstra's imple mentation was the stability-

plasticity dilemma. With the MAARTMAP keypoint clustering as  well as matching can be
performed without suffering from the stability-plasticit y dilemma.

As with the echo states, individual keypoints are clustered and associated to a class based on
the probability obtained via a test match using all the keypo ints. If the probability of a class
is high enough, then all the keypoints are associated to that class, else a new class is created
and all the keypoints are associated to that class. With this method similar keypoints from
different classes can be represented by a single cluster, which leads to a smaller database
size. The dimension of the used keypoint descriptor is 128. These 128 values are used as
input vector to the ART network. Due to the high dimensional i nput vector small changes
in the vigilance parameter have a large effect on the amount of clusters that will be created.
This effect is slightly minimized by rst normalizing the inp  ut vector. Based on the SIFT
parameters for keypoint Itering a vigilance parameter can b e obtained empirically.

3.7 Summary

In this chapter the cognitive sensor fusion architecture co nsisting of a bi-modal attention

and multi-modal sensor fusion module was described. The bas is of the bi-modal attention

module is a visual saliency detection system called SISCA. SSCA is an optimized version

of the visual saliency detection systems of Itti et al. [28]. SISCA includes speed and per-
formance optimizations through respectively a faster feat ure computation and an extended

map suppression method. For auditory attention salient aud itory features are extracted from

a cochleogram through top-down cueing with SISCA. Based on s alient audio the spatial loca-
tion of a sound source is determined via binaural-localizat ion. The mapping of the binaural

cues to a spatial location is done by association the visual salient location of an object with

the auditory cue information through Hebbian learning.

The presented multi-modal sensor fusion module is based on t he multi-modal sensor fusion

process found in the nervous system of a fruit- y [55] and res embles the process found in
the human medial temporal lobe [44]. The self-organizing as sociative processes found in
these biological systems is the basis for the sensor fusion nodule. For the implementation

of the associative memory a new type of ARTMAP called the Multi- directional ARTMAP

(MdARTMAP) was presented. The MAARTMAP is based on the Default AR TMAP [6] and is
extended with the possibility to have many-to-many associa tions, associated node retrieval
in any direction, and un-supervised learning. The multi-mo dal sensor fusion module is
created with a hierarchy of MOARTMAPs which enables shift inva riant pattern recognition

for the separate modalities through distributed clusterin g.

To use the proposed multi-modal sensor fusion module for the recognition and fusion of
audio-visual information, feature extraction methods for these modalities have been pre-
sented. For the recognition of sound, features are extracted by processing cochlear ltered
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audio with an echo state network (ESN). The ESN transforms in put to a higher dimension
(feature space) which makes the recognition easier (linear separable). The echo states ob-
tained from this process are clustered and associated using "distributed clustering” in the
MdARTMAP. With "distributed clustering” all the echo states f rom one audio sample are
clustered and associated separately to the same "audio clas”. The "audio class” is de-
termined by calculating the probability whether this set of states belongs to a previously
encountered "audio class” or not. If an "audio class” is foun d that has a high enough prob-
ability to belong to the echo states then all the states are asociated to this class, otherwise a
new "audio class” is created to which the echo states are asscciated. Experiments conducted
with an ESN in combination with an MAARTMAP showed that it is a su itable method for
un-supervised and on-going learning of sound.

For the recognition and fusion of visual objects with an MAART MAP, SIFT [37] is used for
image feature extraction. The features are extracted from the salient regions computed with
SISCA. For object recognition these SIFT features, called kypoint descriptors, are clustered
with an MAARTMAP using "distributed clustering”. This meanst hat each keypoint derived
from the same object (region in an image) is clustered and associated separately to the same
"object class”. This "object class” is determined by calcul ating the probability whether this
set of keypoints belongs to a previously encountered "objec t class” or not.
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Experiments

The previously proposed cognitive sensor fusion architect ure is designed for modular micro

robots (Replicators) [17] which are currently in developme nt. To test the cognitive sensor
fusion architecture the 3D simulator Symbricator ( gure 4.1 ) is used. The whole cognitive
sensor fusion architecture together with a simple control a rchitecture are implemented in

this simulator in C/C++. Different aspects of the implement ed cognitive sensor fusion sys-
tem are tested by conducing several experiments. In this chapter the experiments will be

described.

Figure 4.1: Symbricator3D interface. On the left there is the GUI with a birds eye view of

the robots. In the middle and top right corner the camera view of the robot and the SIFT
keypoints are displayed. A cochleogram with a saliency map i s displayed below the center,
and in the bottom right corner the salient region of the camer a image displayed.
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4.1 Simulator Implementation

The Symbricator3D simulator ( gure 4.1) developed for the Re plicators and Symbrion project
is based on the open source gaming/simulation engine Delta3 D [1]. This simulator consists
of a 3D graphics toolkit: OpenSceneGraph; a physics engine: ODE; a skeletal animation:
Cal3D; and a multichannel 3D positional audio library: Open AL.

41.1 Robot

The robots used in the simulator have a cubical form and use tw o screw drives to translocate.
They have unisex docking mechanism on four sides and a colour LED on top (see gure 4.2).
The simulated sensors with which they are equipped are:

Color Camera
Depth camera
Distance sensors
Laser scanner

Light sensor

Stereo microphone
Figure 4.2: The simulated robot viewed from the front.

4.1.2 Implementation

To conduct the experiments the robot must be able to perform a ctions based on its percep-
tions and goals. For this a simple subsumption control archi tecture is used. This control
architecture consists of:

Wander

Goal tracking

1.

2.

3. Obstacle avoidance
4. Docking

5.

Object learning

1 Wander
On the lowest level of the control architecture is a wander mo dule. This wander module lets

the robot drive through the environment with some randomnes s. It controls the robot by
setting a speed value for the two screw drives.
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2 Goal tracking

The goal tracking module controls the main actions of the rob ot. With goal tracking the robot
needs to go to interesting objects that are known or unknownt o the robot.

2.1 Bi-modal saliency Goal tracking is done by rst performing bi-modal saliency de tec-
tion on the camera image and on a sound recording of 0.5 seconds from the microphone. If
both modalities have salient data, then based on the predict ed spatial locations of the visual
object and sound source a classi cation is performed.

2.2 Perception alignment  If both modalities perceive an object from the same location then
both percepts are used as input to classify the same object. Qherwise each modality is used
separately to predict the perceived object.

2.3 Target selection The robot only changes its heading to a percept if it is classi ed as the
goal or as unknown. Objects in front of the robot have a higher priority and goal objects
have the highest priority.

2.4 Motor control  To be able to drive to a salient object the robot rst learns to ¢ enter a
salient object in a reinforcement learning task. In this task a mapping is learned between
the spatial location (state) and the direct effect of the speed values for the motors (action).
The weight value between the motor values and the spatial loc ation is increased if the speed
value brought the salient location closer to the center of th e camera image (goal), otherwise
it is decreased.

3 Obstacle avoidance

Using its distance sensors the robot is able to avoid obstacles that are not classi ed as un-
known or as goal objects. These distance sensors are simulaeéd sonar sensors. The robot
turns away from an obstacle when the distance is below a certain threshold.

4 Docking

The docking action is used to determine the energy propertie s of an object. This action
is initiated when the robot is closely in front of a goal or unk nown object. This docking
mechanism is simulated and will return the value "no energy p roperty” if it is not able to
dock.

5 Object learning
The robot learns the properties of an object through association after it has performed the

docking action. It associates the visual and auditory repre sentation together with the energy
property of the perceived object.
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4.2 Scenario

A scenario which will be used to test cognitive sensor fusion is visual-acoustic object recog-
nition. This scenario will be tested using the 3D simulator S ymbricator ( gure 4.1). In this
scenario the robot must be able to distinguish other robots f rom other objects based on low
quality sound and camera images. The robot rst learns to asso ciate different sounds and
objects by driving through the scene (self-learning). By us ing cognitive sensor fusion with
different modalities the robot must be able to detect object s earlier, and recognize objects
better. If the robot is searching for a particular object, th en if it hears a sound, it has to know
what object, in the sense of the object's properties (e.g. visual representation), are associated
with it.

4.3 Task Description

There are two important search tasks that the micro robots mu st be able to perform, these
are: nding other robots to dock to and exchange energy with, a nd nding power outlets to
power up. The robots are equipped with a docking mechanism wi th which they can dock
to power outlets or others to obtain or exchange energy. The p erformance of the cognitive
sensor fusion module will be determined by measuring how wel | a search task is done in
terms of successful trials and classi cation errors. The rst taskis to nd energy, this can be
a power outlet or another robot that also has energy. Robots that are running out of energy
can be distinguished from robots that do have energy by the so und that they make. Robots
that are almost out of energy make a beeping sound and switch o f their red light, all other
robots emit sound which is created physically through their motor and screw drive.

4.4 Experiment Setup

While the robot performs its search task it simultaneously | earns: what objects are in the
room, what kind of sound do they make, and whether the objects give, need, or don't use
energy (through the docking mechanism). While the robot dri ves through the room it learns
the objects that it encounters based on the used modalities (vision and sound). The robot also
stores the energy property that an object has, this can be: "energy sink”, "energy source”, or
"no energy property”. A room will consist of a power outletan d one other robot that needs

energy from time to time.

The robot starts with the task to power up. It tries to nd power  outlets or robots that have
power. Once it has obtained power it wanders around and if it n otices a robot without
energy it tries to provide the empty robot with energy. Whent his succeeds the robot notices
that the other robot has energy and proceeds its search. The dher robot is always stationary
even after it received energy. After a while the energy of bot h robots drop below a threshold.
This happens for both robots at the same time. The stationary robot will then make a beeping
sound, while the other robot tries to look for an energy sourc e. Looking for an energy source
can take as long as the duration of the experiment.
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4.4.1 Conditions

In the experiment several properties will be tested. The add ed value of the sensor fusion
module, and in particular the use of sound as second modality , is tested by performing the
search tasks with and without audio. It is expected that with out audio the time needed to
nd the other robot will increase, and also decrease the recog nition performance. To de-
termine the added value of the attention system, a condition is used in which the saliency
module is not used (lesion experiment). The expected result is that it will take more time to
nd an energy source or sink when there is no attention mechani sm. To test these properties
four experiments are conducted with different conditions. Each experiment is conducted at
least ten times for each condition and each experiment condition lasts thirty minutes.

During the experiments the amount of times the following act ions are performed is counted:

1. Obtained energy from an outlet
2. Gave energy to the other robot
3. Try to give energy to a wrong (misclassi ed) object

4. Try to obtain energy from a wrong (misclassi ed) object

Experiment 1: Binaural-Localization

The added value of binaural-localization to the attention m odule is tested by using a large
partly observable room (gure 4.3). The room consist of three parts, which all contain an
outlet ( gure 4.4). Two search task are performed, one with au ditory and visual input, and
one with visual input only. Because the other robot is not alw ays visible, the added value of
the binaural-localization module can be measured.

Figure 4.3: The room setup for experiment 1. In this Figure 4.4: A picture of the outlet
gure (a) indicates the location of the empty robot, (b), used in the experiment.
(c), and (d) indicate the location of the outlets.
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Experiment 2: Sensor Fusion

To test the sensor fusion architecture for its pattern recognition capabilities a single fully
observable room with one outlet and robot is used as experime nt environment ( gure 4.5).
In this task the emphasis does not lie on the searching performance but on making the right
choice based on the classi cation. This task is also performed with two conditions, one time
with auditory and visual input and one time with only visual i nput. In both cases the robot
should be able to nd the outlet and the other robot easily.

Figure 4.5: The room setup for experiment 2. In this gure (a) i ndicates the location of the
empty robot and (b) location of the outlet.

Experiment 3: Sensor Fusion with Visual Distraction

A third experiment is used to test how well the sensor fusion s ystem performs when there is
another object in the room with visual distracting features . To test this an object ( gure 4.7)
was placed on the wall in the room ( gure 4.6). This experiment was also conducted with
two conditions, with auditory and visual information and wi  th only visual information. For
this experiment the amount of times the robot obtains and giv es energy is measured together
with the amount of times the robot goes to the distracting obj ect.

Figure 4.6: The room setup for experiment 3. In this Figure 4.7: A picture of the dis-
gure (a) indicates the location of the empty robot, (b) tracting object.

location of the outlet, and (c) the location of the distract-

ing object.
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Experiment 4: Bi-modal Attention

The added value of the attention module is tested by performi ng an experiment with and
without the attentional mechanism. This is done by skipping the bi-modal saliency detection
module, this causes the system to classify each camera imageor sound sample. For this the
same setup as in experiment 2 is used.
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Results

5.1 Results of Experiment 1: Binaural Localization

In experiment 1 as described in section 4.4.1 binaural localization is tested by conducting
an experiment where the robot needs to obtain energy and give it to another robot in a large
environment. For this experiment a condition is used where a uditory and visual information

is used and a condition with only auditory information. The r esults are shown in table 5.1
and gure 5.1. In the table and gure the measured actions are in dicated as outlet energy
for the retrieval of energy from an outlet, gave energyor giving another robot energy, gave
no energywhen the robot tried to give energy to a wrong object, and got no energywhen
the robot tried to obtain energy from a wrong object. From the results it can be seen that
the condition where both modalities are used scored higher o n all the measured actions,
inclusive on the wrong type of actions caused by false classi cations. The signi cance of the
difference between the actions is tested using a two-tailed Student's T-test with signi cance
value a = 0:05 and null hypothesis: using audio as second modality does not have an effect
on the measured property. Using audio did not lead to a signi ¢ ant difference in nding
an outlet (p = 0:35> 0:05), nor to a signi cant difference in trying to obtain energy fr om a
wrong object (p = 0:08 > 0:05). A signi cant difference was found in nding and providing

the other robot with energy (p = 0:04 < 0:05) and trying to give a wrong object energy
(p=0:04< 0:05).

Table 5.1: Results for experiment 1: Binaural Localization.

conditions outlet energy gave energy got no energy gave no energy
Image & Audio =1:18 =1:07 =0:65 =0:79 =0:71 =1:53 =0:47 =0:87
Image =0:82 =1:07 =0:18 =0:39 =0 =0 =0 =0
Ho: no difference p=0:35 p=0:04 p=0:08 p=0:04
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Figure 5.1: Results of experiment 1: Binaural Localization. The graphs show the results

for using both visual and auditory information and for using

only visual information. (a)

shows the amount of times the robot powered up at the outlet. ( b) shows the amount of
times energy was given to the other robot. (c) shows the amount of times the robot tried to
obtain energy from a wrong object. (d) shows the amount of tim es the robot tried to give
energy to a wrong object.
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5.2 Results of Experiment 2: Sensor Fusion

The performance of the sensor fusion system was tested as desribed in section 4.4.1 by
using a smaller single room. The results are shown in table 5.2 and gure 5.2. Also in this
experiment the condition where both modalities are used sco red higher on all the measured
actions. The statistical signi cance of these differences is tested with a two-tailed Student't
T-test with signi cance value a = 0:05 and null hypothesis: using audio as second modality
does not have an effect on the measured property. A signi cant difference was measured for
both the amount of times the outlet was found ( p=0:01 < 0:05) and the amount of times the
robot was found and provided with energy ( p = 0:01< 0:05). No signi cant difference was
found in the amount of misclassi cations of objects where the robot tried to obtain energy
from (p=0:53> 0:05) or give energy to (p = 0:34> 0:05).

Table 5.2: Results for experiment 2: Sensor Fusion.

conditions outlet energy gave energy got no energy | gave no energy
Image & Audio =3 =0:94 =222 =1:14 =06 =0:7 =0:1 =0:32
Image =1:3 =1:57 =0:8 =0:92 =04 =07 =0 =0
Ho: no difference p=0:01 p=0:01 p=0:53 p=0:34
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5.3 Results of Experiment 3: Sensor Fusion with Visual Distr  action

Another test was conducted to test the robustness of the sensor fusion system as described
in section 4.4.1. Table 5.3 and gure 5.3 show the results of this experiment. From the results
it is clear to see that the condition in which both sound and vi sual information is used has
a higher value for obtaining and providing energy, and a lowe r value for the amount of
times the distracting object was visited. With a two-tailed Student T-test the signi cance of
these differences is tested with signi cance value a = 0:05, and the null hypothesis: that the
addition of audio as second modality does not have an effect o n the measured properties.
A signi cant difference was measured for all the values, the a mount of times the outlet was
found (p = 0:03 < 0:05), the amount of times the other robot was provided with energ y (p =
0:03< 0:05), and the amount of times the distracting object was visited (p=0:01< 0:05).

Table 5.3: Results for experiment 3: Sensor Fusion with Visual Distraction.

conditions outlet energy gave energy distracting obj
Image & Audio =2:45 =1:04 =1:09 =1:3 =1:73 =0:65
Image =1:45 =1:04 =0:09 =0:3 =4 =241
Ho: no difference p=0:03 p=0:03 p=0:01
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5.4 Results of Experiment 4: Bi-modal Attention

The added value of the bi-modal attention module for the sens or fusion architecture is also
tested as described in section 4.4.1. The same setup as with periment 2 was used, but now
without using the bi-modal attention module. The results of this condition are compared
to the results of the experiment 2. The results of the experiment and a comparison with
experiment 2 are shown in table 5.4 and gure 5.4. Again using a two-tailed Student's T-
test with signi cance value a = 0:05 the signi cance of the difference is measured with
null hypothesis: the addition of bi-modal attention module does not have an effect on the
measured values. The Student's T-test showed that with the u se of bi-modal attention the
amount of times the robot got to the outlet is signi cantly hig her (p < 0:01 < 0:05), and the
amount of times the robot provided the other robot with energ vy is higher (p < 0:01 < 0:05).
A signi cant difference in the amount of misclassi cations wa s not found.

Table 5.4: Results for experiment 4: Bi-modal Attention.

conditions outlet energy gave energy got no energy gave no energy
With attention =3 =0:94 =2:2 =1:14 =0:6 =0:7 =0:1 =0:32
Without attention =05 =0:71 =0 =0 =16 =1:26 =0 =0
Ho: no difference p<0:01 p<0:01 p=0:05 p=0:34
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Figure 5.4: Results of experiment 4: Bi-modal Attention. Th e graphs show the results for
the sensor fusion experiment with the use of the attention mo dule and without the attention

module. (a) shows the amount of times the robot powered up att he outlet. (b) shows the
amount of times energy was given to the other robot. (c) shows the amount of times the
robot tried to obtain energy from a wrong object. (d) shows th e amount of times the robot
tried to give energy to a wrong object.
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Discussion

6.1 Summary of the Results

In the rst experiment the added value of the binaural-locali zation method was tested. An
environment which consisted of three rooms was used so that t he robot needed to search
for its goal. The results showed that the addition of audio, u sed for binaural-localization,
had a positive effect on the search task. As expected the addiion of audio only had an effect
on nding the robot, which emits sound, and not on nding the out let which does not emit
sound. Because the robot was drawn more often to the sound emitting robot the number
of times it tried to give energy to that robot while it was no em pty is also higher. From the
results it can be concluded that the binaural-localization method has an added value to the
cognitive sensor fusion architecture when it comes to nding an object that emits sound. To
see whether sound as second modality only helps in nding the o ther robot or also results
in better classi cations results, a second experiment was conducted.

In the second experiment the sensor fusion system was testedby conducting the experiment

in a smaller room where the robot did not need to search for its goal but merely make a
good classi cation of the perceived objects. The results from this experiment show that

with the addition of audio the other robot was more often succ essfully classi ed and given

energy. Also the amount of times energy was obtained from the outlet was higher with the

addition of audio. The reason why energy was also obtained mo re times is due the fact
that when energy is given the robot's own energy is lowered, a nd therefore has to search
for energy again. Another possible reason was observed during the experiments. When
the robot perceived a salient object it could classify the object based on sound on a larger
distance than with visual information, and when an object is classi ed earlier the robot loses
less time on an uninteresting object.

In the third experiment a visual distracting object was adde d to the setup of the second
experiment to test the robustness of the sensor fusion system. In this experiment the amount
of times the robot went to the distracting object was counted instead of the amount of times
it wanted to give or obtain energy from a wrongly classi ed obj ect. The results from this
experiment show that with the addition of audio the robot obt ained energy more times,
gave energy more times, and went fewer times to the distracti ng object than with vision as
only modality. These results show even clearer than the second experiment that the early
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classi cation based on audio causes the robot to stay focussed on its goal instead of being
distracted by even more salient objects.

The fourth experiment was conducted to see whether the salie ncy detection module was
actually needed or that the robot could perform the task with  all information equally salient.

From the results of this experiment it can be concluded thatt he robot was not able to perform
its task without the saliency detection module. One of the re asons for this result could be
due to the fact that the robot is only able to classify objects from a certain distance. When no
saliency detection module is used the robot has no need to dri ve to an object and will only

make a successful classi cation when it happens to end up in-f ront of an object. Another
aspect that could play a role in this result is the possible bad representation of a system
without an attentional mechanism. Because the saliency detection module was an integral
part of the sensor fusion system, leaving this module out cou Id give a worse performance
than a different sensor fusion system that was built not to ha ve an attentional mechanism at
all.

6.2 Conclusion

In this thesis a biologically inspired cognitive sensor fus ion architecture was presented for
the micro-robots developed in the Replicator project [17]. The goal for this architecture was
to obtain environmental awareness through self-organizat ion. By using several modalities
these robots need to be able to detect and recognize interesing objects in the environment.
However due to the limited processing capabilities of the in dividual micro robots, sensor
information has to be processed ef ciently. To nd an efcient w ay for sensor processing,
biological systems are examined for their sensor fusion capabilities. This has led to the de-
velopment of a biologically inspired cognitive sensor fusi on architecture which consists of a
bi-modal attention module and multi-modal self-organizin g associative memory.

State of the art visual saliency detection mechanisms [33] [18] were altered and combined
with biologically based sensor processing and fusion metho ds [55] [25] to obtain the bi-
modal attention module. The bi-modal attention module cons ists of audio-visual saliency
detection with binaural-localization.

For the sensor fusion module a new type of ARTMAP (self-organi zing associative memory)
called the Multi-directional ARTMAP (MJARTMAP) was developed.  This ARTMAP is used
in a hierarchical manner to obtain shift invariant pattern r ecognition through distributed
clustering. The MAARTMAP was used to cluster states from an ech o state network (ESN)
which used cochlear ltered audio as input in order to recogni ze sounds. Experiments con-
ducted to test the sound recognition module showed that this new method is very suitable
for un-supervised on-going learning of sound. Object recog nition was obtained by cluster-
ing and associating SIFT keypoint descriptors with an MAARTMA P. A multi-modal sensor
fusion module was eventually created by associating the MAAR TMAPSs of the auditory and
visual object recognizers with a higher level MAARTMAP.

Experiments were conducted to test the performance of the cognitive sensor fusion system
and its parts. The robot with its cognitive sensor fusion arc hitecture was implemented in a
3D simulator in which the experiments where conducted. The r esults showed that the robot
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was able to successfully perform search tasks with the cognitive sensor fusion architecture.
The robot performed signi cantly better on its tasks when fus ing auditory and visual infor-
mation than when only visual information was available. A si gni cant better performance
was also found when the bi-modal attention module was used th an when only multi-modal
sensor fusion was used.

With these results an answer is given to the earlier presented research question:

How can biologically inspired sensor fusion be used in an eiath@e|f-organizing micro-system to
increase environmental awareness?

The self-organizing process that underlies the associative memory, which is used as basis for
multi-modal sensor fusion, has shown to be useful for on-goi ng learning. The associative
network was able to successfully re-associate learned feaures to multiple "classes” when a

change occurred in the environment (e.g. the association of features to a "has energy” robot

class and the partly re-association of features to the "empty robot” class).

6.3 Future Work

The presented cognitive sensor fusion architecture is designed for modular micro-robots that
can operate individually but also as a large organism consis ting of multiple micro-robots. To
be able to operate as one organism sensor information from all the micro-robots need to be
shared, processed and fused. Further research needs to be coducted to nd out what kind
of changes need to be made to use this architecture for distributed cognitive sensor fusion.

Concerning the computational complexity of the system, an i ncrease in the speed perfor-
mance can be gained on at least one computationally demanding module, visual object
recognition. The implemented SIFT module is for its good rec ognition performance and
source code availability chosen as image feature extraction method. But a signi cant speed
performance gain can be obtained when keypoints in SIFT are not searched for with the
expensive scale-space extrema detectioethod of SIFT (see section 3.7.2) but instead are pro-
vided by the saliency detection module SISCA (see section 31).
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